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Pattern Recognition in the Pacemaker Intracardiac Impedance Signal 

Предложен метод распознавания образов 
сигналов внутрисердечного импеданса на основе 
разложения ковариационной матрицы ансамбля 
кардиосигналов в базисе его собственных векто-
ров. Амплитуды вычисленных проекций в преоб-
разованном пространстве отражают индивиду-
альные особенности динамики миокарда и явля-
ются оптимальными диагностическими парамет-
рами состояния пациента при формировании 
обучающих выборок для классификатора. 

Рассмотрены алгоритмы обработки кардио-
сигналов для классификации динамических ус-
ловий миокарда пациента. Результаты показы-
вают, что определенные таким образом диагно-
стические параметры могут быть использованы 
для распознавания образов изменяющейся гемо-
динамики и могут быть реализованы как класси-
фикаторы команд для подстройки частоты кар-
диостимулятора. 

A method for pattern recognition of intracardiac 
impedance signal variation is proposed based on 
decomposition of the covariance matrix for the car-
diac signal ensemble in its eigenvector basis. Magni-
tudes of the calculated projections in the trans-
formed space reflect individual features of myocar-
dium dynamics and present optimal diagnostic pa-
rameters of the patient state while forming learning 
samples and creating a pattern classifier. 

Algorithms of the cardiac signal processing are 
considered for classification of dynamic conditions 
of patient’s myocardium. The results demonstrate 
that thus defined diagnostic parameters can be used 
for pattern recognition of changing hemodynamics 
and can be implemented as command qualifiers for 
adjustment of pacing frequency. 

Introduction 

Access to physiological information is very important 
for diagnostics of cardiac hemodynamic disorders and for 
appropriate adjustment of therapy, e.g. cardiac pacing 
appropriate to the state of the cardiovascular system. For 
this purpose, diagnostic features in the form of parame-
ters of intracardiac electrograms in time domain [1-4] or 
decomposition coefficients in different coordinate bases 
[1-7] can be used. 

Complex regulation of the cardiovascular system is 
based on interrelated multilevel loops including the heart 
and the peripheral vessels, higher neural centres, different 
receptors (baroreceptors, chemoreceptors, etc.), afferent 
and efferent neural paths enabling positive and negative 
feedback within the whole closed loop system. Normally, to 
satisfy the increasing hemodynamic needs of the human 
body under increasing load (physical or emotional) the 

regulation centres stimulate increases in the heart pumping 
frequency and in the stroke volume. In pathology, chrono-
tropic incompetence, due to failing sinus node function 
or/and intracardiac conduction disturbances, can be com-
pensated through electrical therapy with the aid of a pace-
maker incorporating a rate-adaptive sensor. Of course, sen-
sors assessing relevant physiological information on hemo-
dynamic needs have highest priority. 

The Closed Loop Stimulation (CLS) system uses the 
so called contractile sensor measuring the intracardiac 
impedance signal that reflects changes in myocardium 
contractility. The algorithm principle is based on the well-
known physiological mechanism of chronotropic incom-
petence compensation through increase of heartbeat 
force. Inotropic compensation of insufficient chronotropic 
function leads to variation of phase structure of cardiac 
cycle, in particular, to shortening of its diastolic phase 
and pre-ejection period (PEP). Phase shift of the in-
tracardiac impedance signal (Fig. 1) is used by the CLS 
pacemaker as a parameter for evaluation of physiological 
need in heart rate increase [8]. The parameter is calcu-
lated by the pacemaker as the integral surface confined 
between the impedance signal curves measured at rest 
(reference) and at load (current curve). 

Heartbeat frequency regulation, based on the principle 
described above, is physiological, as the regulation parame-
ter is linked to regulation of cardiac function by autonomous 
nervous system (ANS). Thus, replacing the chronotropic 
function of the sinus node the pacemaker becomes a part of 
the closed loop system regulating the heart rate. After 
automatic calibration procedure, during which impedance 
signal curves in a certain time window of the cardiac cycle 
(Fig. 1) are evaluated for a certain patient in rest and under 
physical load, the pacemaker stimulates the heart at fre-
quency, necessary to satisfy hemodynamic needs both at 
physical and mental stress [9, 10]. 

Generally, to account for variety of heart function 
changes, a rather detailed cardiac signal description is 
needed, generating data arrays of large dimensionality. 
That leads to complexity of the signal pattern recognition 
process. Besides the above described algorithm imple-
mented in the CLS pacemaker, the intracardiac imped-
ance signal has been used to recognize the patient state 
in several other approaches, i.e. based on creation of 
ensembles of impedance curve parameters [2] and self-
learning neural networks [3].  In attempt to minimize the 
number of diagnostic features of hemodynamic changes, 
we elucidate here another approach to form optimal 
learning samples and to classify patterns in transformed 
subspaces of cardiac signals. The coordinate basis of 
the new subspaces is composed of the covariance matrix 
main eigenvectors of the intracardiac impedance signal 
ensembles obtained with the aid of the CLS-pacemaker. 
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Fig. 1. Variation of the impedance signal under load due to shortening of the diastolic phase of cardiac cycle, 
namely to shortening of pre-ejection period (PEP) 

Materials and methods 

To provide pattern recognition of intracardiac imped-
ance signals the following two steps are used (Fig. 2): 
• selection of diagnostic features of the patterns; 
• creation of pattern classifier. 

The corresponding cardiac signals can be discretely 
sampled n times for each heartbeat yielding sequences 
of n values, i.e. n-dimensional vectors, used then as ba-
sic data. To use that kind of data for discrimination of 
different myocardium conditions a set different well de-
fined stationary (or quasi-stationary) patients’ states must 
be elaborated. 

Selection of diagnostic features of the n-dimensional 
vectors characterizing the impedance signal is a primary 
task. It can be accomplished in two steps. First, the data will 
be orthogonally transformed into the basis of eigenvectors. 
That provides one to one data mapping that preserves the 
dimensionality of the vectors. Their components now are 
new coefficients in the transformed domain. 

To reproduce specific features of the intracardiac 
impedance signal the sampling rate should be high 
enough. On the other hand, the higher the input data 
dimensionality, more complicated is the pattern classifier. 
Thus, as a second step, it is crucially important to reduce 
the dimensionality (r<n) still preserving significant signal 
features (components). A new set of parameters I1, 
I2, … Ir, , i.e. the applied transformation, should result in 
generation of patterns with maximal distances between 
the vector groups belonging to different patient states, 
yet retaining the distances constant inside the groups. 

According to the method of eigensubspaces  
[5-7, 11], any set of cardiosignal realizations, i.e.  
n-dimensional vectors, reflecting a complex process of 
myocardium excitation and movement, can be associ-
ated with its own system of eigenvalues and eigenvec-
tors. The cardiosignal realizations can be expanded in 
the eigenbasis, i.e. their projections on the eigenvectors 
can be calculated. These projections (vector 

components) as well as their integral characteristic, e.g. 
a total sum of the component squares, can be used for 
the signal description. The defined characteristic has a 
very important feature for the qualification process – it 
possesses maximal contribution of the values of the car-
diosignal expansion on eigenvectors of “its own” group. 

A classification process of n-dimensional realizations 
of intracardiac impedance signals in the coordinate basis 
of the eigenvectors [12] begins with composition of a 
cardiosignal ensemble from several signal realizations 
measured in a sequence of heartbeats. Each observation 
(sampling) window should be synchronized with some 
definite cardiac cycle phase, e.g. with the stimulating 
pulse. Each cardiosignal realization in the observation 
window presents an array of n discrete values of the  
signal: 
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where E1, E2, … Em form an ensemble of realizations of 
the intracardiac impedance signal, emj (j = 1, 2, …, n) are 
discrete signal values, m is the number of the signal reali-
zations (heartbeats), and n is the signal sampling factor. 

The ensemble of Ei (i = 1, 2, …, m) in the form of (1) 
can be used as a learning sample in order to determine 
the parameters of affiliation to different groups of the 
cardiac state Kk (k = 1, 2, … ν ). To learn classification 
means to determine Kk, derived on Ei, relevant not only 
for the learning sample Ei, but also for any ensemble E of 
cardiosignals [5, 6, 11]. Figure 3 depicts the algorithm of 
such signal classification. Analysis of patterns of myo-
cardium dynamics reflected in signals of intracardiac 
impedance is based on group description in the trans-
formed coordinate basis of eigenvectors defined on 
sampled signal amplitudes. 
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Fig. 2. Flow chart of the pattern recognition process for intracardiac impedance signals
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According to the method of eigensubspaces [7, 11], 
the covariance matrix of the ensemble of cardiosignal 
realizations, obtained for each group, has the following 
expansion in the coordinate basis of eigenvectors 
V1, V2, … Vn corresponding to eigenvalues 

1 2, ,..., nλ λ λ : 
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The eigenvectors V1, V2, … Vn of the form (2) are or-
thonormal and ordered according to the appropriate ei-
genvalues 1 2 ... nλ ≥ λ ≥ ≥ λ , the main eigenvectors 
V1, V2, … Vr corresponding to the greatest eigenvalues 

1 2 ... rλ ≥ λ ≥ ≥ λ . 
Each cardiosignal Ei can be presented then as a set 

of decomposition coefficients – projections on the  Vj  
basis vectors of the eigensubspace of the q–th group: 

 q q
iij jb E V= ⋅ . (3) 

The decomposition coefficients bij, in the basis of 
main eigenvectors obtained as a result of inner product 
of the ensemble of the impedance signal realizations E1, 
E2, … Em with main coordinates V1, V2, … Vr  reflect ba-
sic information on the patient’s heart state. These coeffi-
cients can be used in a classification algorithm as new 
subsets of diagnostic features of lower (r<n) dimension. 

When q ≠ k, the signal Ei belongs to a different 

group, with 
2( )ijb∑  and 2

jλ  values differing more, the 
more different are the groups k and q, and, conse-
quently, the more different are their eigensubspaces. 
Then, projection of the signal Ei onto the q

jV  eigenvector 

of the “strange” group q is equal to: 
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While creating the classifier, it is recommended to 
use the quantitative characteristic of Ei cardiosignal de-
composition on main vectors of the eigensubspace of the 
group k, i.e. Hk , which represents a square of the signal 
Ei  projection: 
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Where  rk  is dimension of the eigensubspace, built 
on the main eigenvectors of the group k. 

In view of the fact, that the introduced characteristic 

is maximal for the cardiosignal iE  expansion on the 
main vectors of the eigensubspace of its group, the clas-
sification criterion can be formulated as follows: 
“if  0kq k qh H H= − > , 1, 2 ..., ( )q q k= ν ≠ , 

 then  K k= ”  (6) 
One of the ways to achieve the maximal distance be-

tween the groups is to select the dimension of the trans-
formed subspace of the patterns’ features. In order to 
maximize the difference between expansion characteris-
tics of intracardiac impedance signals on the vectors of 
their own group and the vectors of the different groups, it 
is necessary to select the dimension of the subspace of 

main eigenvectors of each group rk = r1, …, rν  in the 

proposed algorithm (Fig. 3), so that the maximum of the 
form (6) would be provided. 
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Fig. 3. The classification algorithm for intracardiac 
impedance signalsWith q = k, the signal Ei is pro-
jected onto the subspace vectors of the same group, 
to which it belongs. Therefore the projections, calcu-
lated according to (3), would allow the most precise 
representation of the Ei by a linear combination of 
eigenvectors. Besides that, the square of Ei signal 
projection on Vj  vector is larger, the larger is the 
corresponding eigenvalue λ j , according to the 
properties of decomposition in the basis of eigen-
vectors. 

Thus, according to determined rk values of the ana-
lyzed proper subspaces, the ordered feature set of in-
tracardiac impedance signals of lower dimension could 
be used. 

Results 

The described discrimination algorithm has been 
tested on sets of intracardiac impedance signals ob-
tained for 70 patients with the CLS pacemaker implanted 
for rate adaptive heart pacing. The impedance signal has 
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been measured on the electrode located in the right ven-
tricle apex against the pacemaker housing (Fig. 1) [1]. 
The signal has been sampled at frequency of 128 Hz in a 
time window of 47÷289 ms after ventricular excitation, 
giving thus a set of 32 amplitude values for each heart-
beat. 

Intracardiac impedance signals have been measured 
for each patient in four stationary states with different 
levels of physical activity, corresponding to four different 
conditions of myocardium dynamics: 
• group I – “physical exercise, standing or sitting” – 

exercise (“exr”); 
• group II – “frequent (overdrive) stimulation in rest, 

sitting” – overdrive (“ovr”); 
• group III – “rest, sitting” – rest (“rst”); 
• group IV – “rest, supine” – supine (“sup”). 

Characteristic impedance signals measured in one 
of the patients in the four different myocardium states are 
presented in Figure 4. Learning samples of normalized 
realizations of intracardiac impedance signals were cre-
ated for each condition state (group), the size of learning 
samples varying from 10 to 30 realizations. An example 
of a learning sample of 30 realizations, corresponding to 
the group 3 – hemodynamic state in the sitting position 
without physical exercise, is shown for one of the pa-
tients in Figure 5. 

 
Fig. 4. Characteristic signals of intracardiac imped-
ance measured in one of the patients in four different 
states: exr – exercise, ovr – overdrive, rst – rest (sit-
ting), sup – supine (rest) 

The signals not applied for the learning procedure 
were used for the discrimination algorithm verification. In 
numerical experiments on pattern recognition of intracar-
diac impedance signals, covariance matrices of ensem-
bles were composed of selected realizations; proper sub-
spaces and total projections on three main eigenvectors 
in “native” and “strange” subspaces were defined. 

Test-sequences of each group were delivered to the 
classifier in turns. 

 
Fig. 5. An example of a learning sample: 30 meas-
ured signals of intracardiac impedance measured in 
one of the patients in the sitting position without 
physical load (rest state) 

Table 1 presents the values of the state features – 
total projections of 31-th test realization of the signal en-
semble for each group after the expansion in eigensub-
spaces of the groups 1, 2, 3 and 4.  

The results of 31st  intracardiac impedance test sig-
nal’s classification for groups 1-4, shown in Table 1, 
demonstrate the maximal values of the signs, character-
istic for recognition of the “own” group. 

Conclusion 

The numerical experiments on pattern recognition of 
intracardiac impedance signals in 70 patients have con-
firmed theoretical considerations of the method of eigen-
subspaces. All the signals of learning sample were cor-
rectly referred to their groups with the integral criterion 
features – maximal values of total projections in the basis 
of three main eigenvectors. For the test signals, not in-
cluded into the learning sample, the indices of classifica-
tion sensitivity varied in the range of 78÷97%. 

Still, the data presented in Table 1 in some cases 
show very small differences between the values of total 
projections on the “native” and on the “strange” groups, 
e.g. the test signal of group III in eigensubspaces of 
groups III and IV). This phenomenon occurs in cases of 
relatively close location of eigensubspace domains for 
different groups in certain patients and could reflect the 
existence of peculiarities in their heart function. It should 
be noted that the conditions of groups III and IV, both 
corresponding to the physiological condition of rest (in 

 

Table 1. Total projections of test signals of groups I-IV in “native” and “strange” subspaces 

Test sequences Group I Group II Group III Group IV 
realization 3I Group I 0.9997 0.8976 0.7563 0.8567 
realization 3I Group II 0.9727 0.9879 0.9017 0.8251 
realization 3I Group III 0.9535 0.9773 0.9883 0.98901 
realization 3I Group IV 0.8812 0.9672 0.9764 0.9986 
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Fig. 6. Sensitivity index of classification of intracar-
diac impedance test signals, depending on the size 
of learning sample, in 3 patients (P1, P2, P3) 

sitting and supine positions, respectively) are the 
most similar, though, in absence of pathology, are char-
acterized by different contractile function of myocardium 
and its dynamics. The investigations were carried out in 
patients, suffering from cardiac rhythm abnormalities and 
often having decreased dynamic reserves of myocar-
dium, which leads to still higher approximation of differ-
ent, but similar enough groups of myocardium dynamics 
condition. 

Generally, in order to increase the degree of diver-
gence between the groups, it is necessary, besides the 
selection of proper subspace dimension, to pay attention 
to the creation of learning sample. The influence of its 
size on the authenticity of the obtained results is shown 
in Figure 6. Its necessity is also conditioned by the fact 
that, as mentioned before, the contractile CLS sensor 
responds to both physical and mental stress, and the 
level of the latter one can hardly be controlled in the ex-
periment. 

Furthermore, additional procedures for transforma-
tion of different states eigensubspaces can be applied 
that could increase their discrimination accuracy. 

Thus, it has been demonstrated that the method of 
eigensubspaces enables discrimination of patterns of 
intracardiac impedance signals, based on strongly re-
duced number of parameters – total projections in the 
basis of major eigenvectors of covariance matrix of sig-
nal ensembles. Differential criteria of intracardiac signal 
features in the bases of “native” and “strange” signal 
groups can be used for determination of the signal vector 
eigensubspace dimension. Diagnostic features – here, 
total projections of intracardiac impedance signal vectors 
– can be used in rate adaptive pacemaker algorithms. 
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