Биомедицинские приборы и системы

УДК 616.12-073.7

Е.О. Иванько

Построение адаптированной вейвлет-функции для выявления поздних потенциалов предсердий

В статье рассматривается построение новых вейвлет-функций, адаптированных к проблеме идентификации поздних потенциалов предсердий (ППП) в сигнал-усреднённой ЭКГ при помощи непрерывного вейвлетпреобразования (НВП). Показаны преимущества применения новых вейвлет-функций в сравнении со стандартными вейвлетами при выявлении ППП.

The design of new wavelets adapted to the problem of Atrial Late Potentials (ALP) detection in signal-averaged ECG by continuous wavelet transformation (CWT) is considered in the article. The advantages of new wavelets application to ALP detection in comparison with the standard wavelets are shown.

Введение

На ранних этапах развития аритмий электрофизиологические нарушения миокарда отражаются в тонкой структуре ЭКГ и не выявляюся при визуальном анализе кардиосигнала без применения специальных процедур цифровой обработки сигналов. Выявление потенциалов замедленной деполяризации предсердий, представляющих собой микровсплески в конце зубца Р, осложняется тем, что по амплитуде поздние потенциалы предсердий сравнимы с шумовыми составляющими кардиосигнала. Получение сигнал-усреднённой ЭКГ (СУ ЭКГ) позволяет существенно улучшить соотношение сигнал/шум. Однако во многих случаях требуется дополнительный анализ СУ ЭКГ для идентификации дополнительных информативных признаков ППП, отличных от параметров по методу Симсона.

ППП представляют собой низкоамплитудные высокочастотные составляющие ЭКГ. В статье [1] было показано, что построение скейлограмм непрерывного вейвлет-преобразования (НВП) позволяет выделить из общего диапазона масштабов область локализации ППП. При обнаружении таких колебаний при помощи НВП сходство формы ППП и материнской вейвлет-функции позволяет получить более высокие значения вейвлет-коэффициентов вследствие корреляции между вейвлетом и выявляемыми микровсплесками. Поэтому возникает задача

построения вейвлета, приближенного к модельной форме ППП.

Требования к материнским вейвлетам

Непрерывное вейвлет-преобразование функции f(t) определяется формулой [2-4]:

$$W_{\psi}(a,b) = \langle f(t), \psi_{a,b} \rangle = \frac{1}{\sqrt{|a|}} \int_{-\infty}^{\infty} f(t) \psi^{*} [\frac{t-b}{a}] dt, (1)$$

где $\psi_{a,b}$ — двухпараметрическое семейство функций:

$$\psi_{a,b}(t) = \frac{1}{\sqrt{|a|}} \psi^* \left[\frac{t-b}{a} \right], \ a,b \in R, \ a \neq 0, \quad (2)$$

Параметр b определяет сдвиг по оси времени t, a — масштабный коэффициент, который отвечает за растяжение и сжатие материнской вейвлетфункции $\psi(t)$, <> — скалярное произведение.

Для того, чтобы из функции $W_{\psi}(a,b)$ двух переменных a и b можно было восстановить f(t), функция $\psi(t)$ должна удовлетворять определённым требованиям. Вейвлеты для НВП являются нормированными функциями:

$$\left\| \left\| \psi(t) \right\|_{2} = \left| \int_{-\infty}^{\infty} \psi(t) \right|^{2} dt = 1, \qquad (3)$$

Для обращения вейвлет-преобразования (1) необходима конечность интеграла [2-5]:

$$\int_{-\infty}^{\infty} \frac{\left|\widehat{\Psi}(\omega)\right|^2}{|\omega|} d\omega < \infty, \qquad (4)$$

где $\widehat{\Psi}(\omega)$ — преобразование Фурье от $\psi(t)$.

Также для функции $\psi(t)$ необходимым условием является выполнение требования нулевого среднего, т.е. равенства нулю нулевого момента [2-4]:

$$\int_{-\infty}^{\infty} \psi(t) dt = 0, \qquad (5)$$

что при $\psi(t) \in L^1(\mathbb{R})$ становится достаточным условием для вейвлет-функции $\psi(t)$, применяемой при НВП [2].

Создание вейвлетов для НВП на основе модели ППП

Создание новой вейвлет-функции на основе модели ППП достигается путём преобразования модельной формы ППП в функцию $\psi(t)$, которая является базисом НВП, адаптированным к выявлению микровсплесков заданной формы. Отличительной чертой вейвлет-функций является локализация, т.е. наличие копактного носителя как во временной, так и в частотной областях определения функции [6]. Локализация во времени предполагает концентрацию энергии внутри некоторого финитного интервала. Поэтому примем значения аргумента t для образца ППП равномерно распределенными на отрезке [0,1]. Частотная локализация достигается компактностью носителя Фурье-образа. В рассмотренной задаче спектр модели ППП сосредоточен в достаточно узкой полосе 1-20 Гц, поэтому новая материнская вейвлет-функция локализована в узком частотном диапазоне.

В данной работе при создании нового материнского вейвлета в качестве модели использовался потенциал действия, полученный при решении уравнений Ходжкина-Хаксли [7] и представляющий собой набор дискретных значений $\{(t_k, y_k)\}_{k=1,...,K}$, распределённых на интервале [a, b], так что $a \le t_k \le b$ и $y_k = f(t_k)$.

Необходимо принять во внимание, что заданная модель ППП не может использоваться в качестве вейвлет-функции для НВП, так как не удовлетворяет требованию нулевого среднего (5). Поэтому исходная модель ППП аппроксимировалась на интервале [0,1] по методу наименьших квадратов:

$$\sum_{k=1}^K [\psi(t) - y_k]^2 = \min,$$

так чтобы
$$\int\limits_0^1 \psi(t) dt = 0$$
 ,

где y_k — заданный образец, $\psi(t)$ - искомая материнская вейвлет-функция. В точках 0 и 1 выполняются граничные условия $\psi(0) = 0$ и $\psi(1) = 0$.

При помощи вычислительных средств системы MATLAB [2,3] были построены материнские вейвлеты различной формы (рис.1): adwave1, adwave2 и adwave3.

Полученные материнские вейвлеты имеют равный нулю интеграл и единичную норму, поэтому удовлетворяют требованиям, предъявляемым к вейвлет-функциям, и могут использоваться для построения скейлограмм НВП. Однако, не каждая из приведенных на рис.1 адапти-

рованных вейвлет-функций в достаточной мере отражает особенности модельной формы ППП. Из табл.1 видно, что среди трёх новых вейвлетов *adwave1* имеет наибольший коэффициент корреляции с заданной моделью ППП.

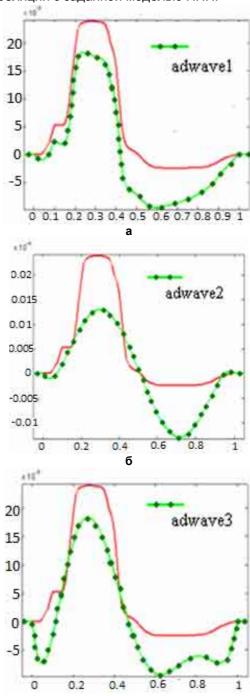


Рис.1. Исходный образец в виде ППП и адаптированные вейвлеты: a) adwave1; б) adwave2; в) adwave3

Табл.1. Коэффициенты корреляции *CoefCorr* между образцом ППП и адаптированным вейвлетом

Адаптированный вейвлет	CoefCorr
adwave1	0,9717
adwave2	0,7943
adwave3	0,9652

Для тестирования новых и стандартных вейвлет-функций на точность обнаружения волн типа образца ППП в MATLAB был построен модельный сигнал $S(t) = f[\frac{t-20}{8}] + \sqrt{2}f[\frac{t-40}{4}]$,

растяжением, сдвигом и сложением двух волн f(t) модели ППП (рис.2). НВП данного сигнала должно дать информацию о локализации всплесков ППП во времени (позиции 20с и 40с на временной оси скейлограммы) и масштабе растяжения исходного образца ППП (позиции 8 и 4 на масштабной оси скейлограммы).

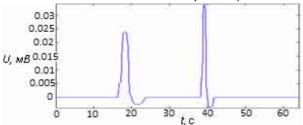


Рис.2. Модельный сигнал $S(t) = f[\frac{t-20}{8}] + \sqrt{2}f[\frac{t-40}{4}]$

Вейвлет-функция adwave2 имеет наименьший коэффициент корреляции с заданной моделью ППП (табл.1). На рис.3б видно, что использование этой вейвлет-функции при НВП даёт неудовлетворительные результаты: на масштабновременной плоскости кроме основных пиков появляются дополнительные, затрудняя интерпретацию полученных скейлограмм. При использовании adwave1 и adwave3 всплески ППП хорошо локализованы во времени, а на масштабах 4 и 8 имеются явные максимумы значений вейвлет-коэффициентов (рис.3а, в).

При сравнении результатов обнаружения волн адаптированными вейвлетами *adwave1* и *adwave3* с результатами их обнаружения обыч-

ными вейвлетами (рис.3а,в и рис.4) видно, что НВП модельного сигнала S(t) с использованием стандартных вейвлет-функций (Добеши 4-го порядка, симлет 4-го порядка, койфлет 4-го порядка, Мейера, мексиканская шляпа, Гаусса 5-го порядка) не позволяет правильно определить интересующие нас значения коэффициента масштабирования и временного положения всплесков.

Выявление ППП с помощью адаптированных вейвлет-функций

При использовании адаптированного вейвлета adwave1 на скейлограмме кардиоцикла с добавленными модельными ППП явно наблюдается наличие 4-х отдельных составляющих, являющихся микровсплесками в конце волны Р (рис.5). Однако, присутствие низкочастотной высокоамплитудной составляющей ЭКГ сигнала затрудняет идентификацию ППП. Это проявляется в том, что значения вейвлет-коэффициентов для низкочастотных зубцов Р, Т и комплекса QRS на больших масштабах НВП значительно превышают значения вейвлет-коэффициентов для низкоамплитудных высокочастотных ППП на малых масштабах скейлограммы.

На масштабно-временной плоскости скейлограммы Р зубца можно выделить область, соответствующую локализации ППП [8]. Анализ скейлограммы в определённом временном диапазоне на масштабах 2-15 позволяет исключить из рассмотрения высокоамплитудную составляющую Р зубца. На рис.6 области R_1 и R_2 отвечают за форму низкочастотного Р зубца, а область R_4 , находящаяся на пересечении терминальной части Р зубца во времени и полосы малых масштабов, — область поиска паттернов, характерных для ППП.

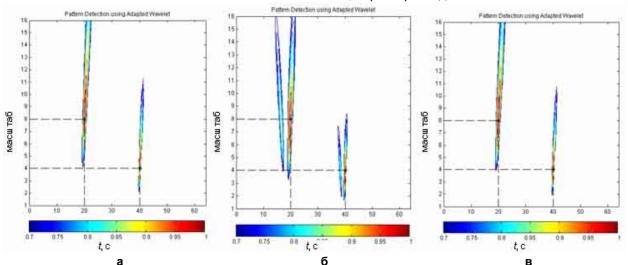


Рис.3. Контурное представление НВП сигнала S(t) (с пороговым значением вейвлет-коэффициентов 0.7) при использовании адаптированных вейвлет-функций a) adwave1; б) adwave2; в) adwave3

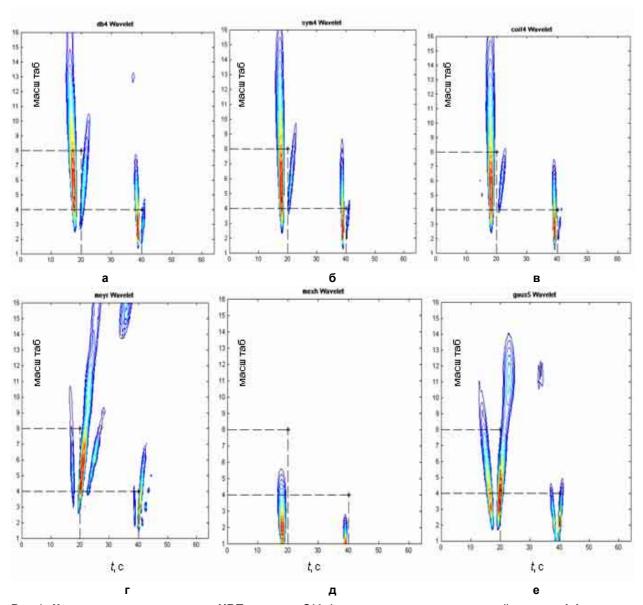


Рис.4. Контурное представление НВП сигнала S(t) (с пороговым значением вейвлет-коэффициентов 0.7) при использовании стандартных вейвлет-функций: а) Добеши 4-го порядка (db4); б) симлет 4-го порядка (sym4); в) койфлет 4-го порядка (coif4); г) Мейера (meyr); д) мексиканская шляпа (mexh); е) Гаусса 5-го порядка (gaus5).

В рассматриваемом случае сигнал f(t) представляет собой Р зубец кардиосигнала и заданабором дискретных значений $\{f_k\}$: $f(t) = f(k\Delta t) = f_k$, где $k \in N$. Значения вейвлеткоэффициентов НВП сигнала f(t) вычисляются согласно формуле (1). Параметр временного сдвига b изменяет свои значения с шагом Δt : $b = \overline{1, L}$, где L — количество отсчетов сигнала f(t). Значения масштабного параметра а также дискретны и составляют вектор длиной М. Таким образом, область R4 на масштабно-временной плоскости скейлограммы Р зубца представляется в виде матрицы вейвлет-коэффициентов $M_{\scriptscriptstyle nnn} imes L_{\scriptscriptstyle nnn}$, где $M_{\scriptscriptstyle nnn}$ является длиной вектора масштабов от 2.07 по 14.63 с логарифмическим изменением шага при переходе от одного масштаба к другому [1], а L_{nnn} определяет количество дискретных значений вектора времени, приходящихся на длину анализируемого участка Р зубца. В данном случае M_{nnn} =40, а L_{nnn} =80.

С целью получения численных характеристик при анализе Р зубца с наличием ППП расчитывалась усреднённая кривая значений вейвлет-коэффициентов для всех масштабов диапазона 2.07-14.63:

$$\overline{\mathbf{W}}(t) = \frac{1}{M_{\Pi\Pi\Pi}} \sum_{k=1}^{M_{\Pi\Pi\Pi}} \mathbf{W}_k(t), \tag{6}$$

где $W_k(t)$ — срезы значений вейвлет-коэффициентов для каждого из масштабов на указанном промежутке.

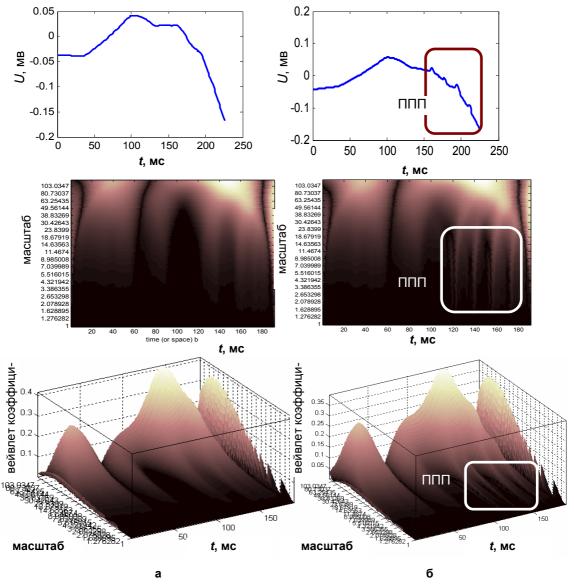


Рис. 5. Зубцы Р ЭКГ: a) без ППП, б) с наличием 4-х ППП и их скейлограммы в 2D и 3D представлениях с использованием вейвлет-функции adwave1

Для сравнения эффективности выявления ППП с помощью вейвлет-функций, адаптированных к форме ППП, и стандартных вейвлетов, были вычислены статистические характеристики усреднённых кривых W(t), полученных при использовании различных вейвлетов. Среди стандартных вейвлет-функций для сравнения были выбраны вейвлет-функции Добеши 4-го порядка, койфлет 4-го порядка, симлет 4-го порядка, Мейера (db4, coif4, sym4, meyr) как вейвлеты, позволяющие получить более наглядные скейлограммы кардиоциклов с ППП, чем другие стандартные вейвлеты. Необходимо отметить, что применение стандартных вейвлетов, форма которых не отражает особенности выявляемых микровсплесков, вследствие отсутствия корреляции между вейвлетом и ППП приводит к результатам НВП, которые нет смысла сравнивать с показателями, полученными при правильно подобранных для данной задачи вейвлет-функциях.

В табл.2 приведены нормированные значения среднего квадратичного отклонения σ/σ_{max} для $\overline{W}(t)$ и нормированные значения площади под усреднённой кривой абсолютных значений вейвлет-коэффициентов S/S_{max} для разных вейвлет-функций (рис.8). Здесь σ и S — значения среднего квадратичного отклонения и площади под кривой для данного вейвлета, σ_{max} и S_{max} — максимальные значения данных параметров среди всех исследуемых вейвлетов.

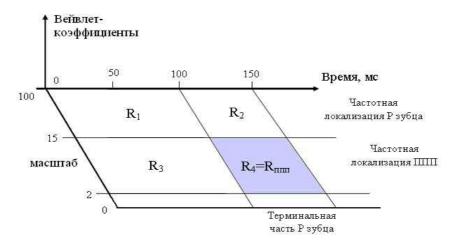


Рис.6. Масштабно-временная плоскость скейлограммы с разделением на области R_1 - R_4 , соответствующие характерной частотно-временной структуре P зубца с наличием ППП

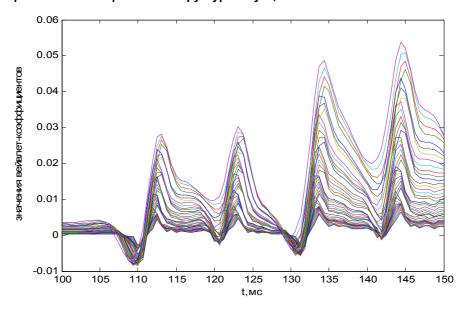


Рис. 7. Вейвлет-коэффициенты Р зубца с наличием 4-х ППП на масштабах 2.07-14.63 при использовании вейвлет-функции adwave1

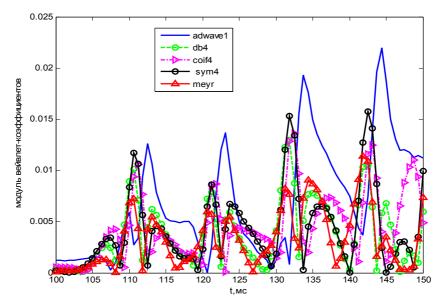


Рис. 8. Усреднённые абсолютные значения вейвлет-коэффициентов Р зубца с наличием 4-х ППП при использовании вейвлет-функции adwave1 и стандартных вейвлетов

Табл.2. Параметры о/отах и S/Smax, полученные при использовании разных вейвлет-функций

	adwave1	adwave3	db4	sym4	coif4	meyr
σ/σ _{max}	1	0.98	0.8	0.91	0.9	0.71
S/S _{max}	1	0.98	0.55	0.62	0.65	0.48

Анализируя данные, представленные в табл.2, можно сделать вывод, что при применении адаптированных вейвлет-функций с целью идентификации ППП площадь под усреднённой кривой абсолютных значений вейвлет-коэффициентов на 35-45% превышает данный параметр, полученный при НВП с использованием стандартных вейвлет-функций. Это объясняется тем, что адаптированные вейвлет-функции близки к форме выявляемых модельных ППП и позволяют получить большие значения вейвлет-коэффициентов по сравнению со стандартными вейвлетами. Значения параметра σ/σ_{max} при использовании адаптированных вейвлетов на 10-30% превышают этот показатель при применении стандартных вейвлетов.

Выводы

При применении адаптированных вейвлетфункций, построенных с целью идентификации ППП, срезы вейвлет-коэффициентов на малых масштабах (2-15) позволяют получить значительно большие значения вейвлет-коэффициетов и вычисляемых по ним параметров, таких как среднее квадратичное отклонение и площадь под усреднённой кривой абсолютных значений вейвлет-коэффициентов, по сравнению с параметрами, полученными с использованием стандартных вейвлет-функций. Создание вейвлет-функций, ориентированных на выявление конкретных особенностей ЭКГ сигнала, и применение адаптированных вейвлетов в диагностических системах ЭКГ ВР может повысить показатели чувствительности и специфичности при обнаружении ППП.

Литература

- Е.О. Иванько, Н.Г. Иванушкина, Ю.С. Синекоп. Многоуровневый анализ электрокардиограмм для выявления поздних потенциалов предсердий// Электроника и связь: тематический выпуск "Электроника и нанотехнологии". – 2009.— №4-5.— с.160-164.
- 2. *Смоленцев Н.К.* Основы теории вейвлетов. Вейвлеты в MATLAB. М.: ДМК Пресс, 2008. 448 с.
- Misiti M., Misiti Y., Oppenheim G., Poggi J.-M. (Ed.).
 Wavelets and their applications 2007. 332 p.
- P.S.Addison, J.Walker, R.C.Guido. Timefrequency analysis of biosignals// IEEE Engineering in medicine and biology – 2009. – №28. – p.14-29.
- Héctor Mesa. Adapted Wavelets for Pattern Detection//Progress in Pattern Recognition, Image Analysis and Applications — Proceedings CIARP 2005. — p. 933-944.
- Синютин Е.С. Выбор вейвлет-функции для оптимального представления ЭКГ-сигнала// Известия ЮФУ. Технические науки: тематический выпуск "Компьютерные и информационные технологии в науке, инженерии и управлении". — 2008. — №2. — с.211-214.
- Е.О. Иванько, Н.Г. Иванушкина, Ю.В. Прокопенко. Моделирование процессов возникновения циркуляции волны возбуждения в миокарде// Управляющие системы и машины – 2009.– №3.– с.36-41.
- Metin Akay (Ed.). Time-Frequency and Wavelets in Biomedical Signal Processing. — IEEE Press, 1997. — 652 pp.