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Abstract – Existent method of transmission coefficient cal-
culation is analyzed and compared by adequacy and appli-
cation area. New analytical method for parabolic well was 
developed, based upon functions of parabolic cylinder. 
Recommendations on application are done based on ful-
filled analysis for each model. 
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I. INTRODUCTION 

Calculation of electric current through semiconductor 
nanostructures with transverse electron transport (super-
lattices, resonant tunneling diodes (RTD), components of 
single-electronics, low-dimensional ballistic structures, 
etc.) mainly reduces to "scattering problem", in which 
transmission coefficient acts the main role. A family of 
analytical methods, based on transfer matrices; numerical 
methods, perturbation theory and other methods are using 
for defining coefficient calculation by now. However, 
publications about the limits of applicability and critical 
features of each method are absent. Choice of one or an-
other method is defined by personal preferences of the 
author, rather than deep knowledge of methods’ specifics. 
Wrong choice can make modeling process either more 
complex or less adequate, or misled into doubtful conclu-
sion. Motivation of the current work is eliminating the 
gaps in knowledge about critical features of each method 
and methods’ relation to each other. 

II. THE TRANSFER-MATRIX METHODS 
The transfer-matrix method is used to find a trans-

mission coefficient through the quantum system, in 
which potential energy of electron is or can be approxi-
mated by a piecewise-constant function (Fig. 1, a), a 
piecewise-linear (Fig. 1, b) or a piecewise-parabolic 
function (Fig. 1, c). 
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Figure. 1. Types and approximation of potential relief for nanostruc-

ture with double barrier: a) flat-bands, b) linear voltage drop, c) linear 
voltage drop in case of parabolic well. 

Solutions of the effective mass Schrödinger equa-
tion in the form of plane waves, the Airy functions and 

parabolic cylinder functions correspond to these cases, 
respectively. 

General goal of the transfer matrix method is to find 
a matrix M = [m11, m12; m21, m22], connecting amplitudes 
of incident and reflected waves in the left (AL and BL) 
and right (AR and BR) bulk regions of the structure (so-
called "reservoirs"): [AR BR]T = M[AL BL]T. 

Once the form of Schrödinger equation is known, M 
matrix is can be found by imposing boundary conditions 
on the wave function and its derivative at the het-
eroboundaries. Having M, transmission coefficient can 
be calculated by the formula T = |t|2(|kR|mL)/(|kL|mR), 
where kL(R) and mL(R) are z-components of wave vector 
and electron effective mass in the left (right) reservoir; 
t = m11 + m12m21/m22. 

A. Plane Waves 
Qualitative knowledge about the processes in nanos-

tructures at small bias can be obtained by assuming that 
bands are shifting, nevertheless remaining flat within 
each layer, as shown in Fig. 1, a [1]. This allowing seek-
ing for solutions of the Schrödinger equation in the each 
layer in the form of plane waves: 

i(i(z)) = Aiexp(ikiz) + Bi exp(–ikiz). 

B. The Airy functions  
If neglecting space charge, the best approach is linear 

voltage drop along the nanostructure (Fig. 1, b). The solu-
tions of the Schrödinger equation at the i-th area (i = 1, 2, 
3) in such conditions are superposition of the Airy func-
tion Ai and complementary Airy function Bi [2]: 

i(i(z)) = AiAi((i(z)) + BiBi((i(z)), 

where i(z) is a function, obtained by replacing the vari-
able during obtaining the Airy equation from the 
Schrödinger equation. 

C. Functions of parabolical cylinder 
This method has been developed by the authors of this 

article and can be used for any piecewise-quadratic poten-
tial relief, or the one that can be approximated by them. 

By the proper variation of stoichiometric composi-
tion in the well, a parabolic quantum well formation can 
be reached (region I in Fig 1, c). The solution of the 
Schrödinger equation for region I (Fig. 3, c) is a sum of 
parabolic cylinder functions: 
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 (z) – function, obtained by the replacing a variable during 
obtaining equation of a parabolic cylinder from Schrödinger 
equation ( ; ; )M a b z  is a degenerate hypergeometric series. 

One of the applications of these RTDs is multi-valued 
logic, as RTD’s current-voltage characteristics in princi-
ple can have the same number of peaks as metastable 
levels in the quantum well, and RTD with a parabolic 
well has equidistance peaks at its the VAC. 

III. THEORY OF PERTURBATIONS 
Using a perturbation theory, for some nanostruc-

tures, such as RTD, analytical functions can be obtained, 
which can fairly approximate shape of Т(Еz). For RTD 
such function is a sum of Lorentz-type functions: 
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where Гi is a «natural» broadening; Еі are positions of 
the i-th metastable energy level in the quantum well, 
Гi = Гi + Гp are total broadening of the i-th level; Гp is a 
relaxation broadening, N is a total number of energy 
levels in the quantum well. 

IV. NUMERICAL METHODS 
To solve the Schrödinger equation numerically, three-

point conservative finite-difference scheme of second or-
der accuracy on a uniform grid is usually built [3]. To ob-
tain this scheme, integro-interpolation method is used for 
interior points, and quantum transmitting boundary 
method is used for boundary points [4]. 

As no assumptions about the form of potential are re-
quired in the numerical methods, they are applicable for 
potential relief of arbitrary form. 

V. COMPARATIVE ANALYSIS 
Implementation of the transmission matrices method is 

quite simple, although numerical realization is required in 
practice due to complexity of the form of transmission co-
efficient. We have shown that numerical instability of the 
final matrix calculation increase drastically, when the num-
ber of matrices excides 5-9 (for typical layers’ sizes). Until 
the method is stable, it is exact (within underlying assump-
tions) contrary to numerical methods, and can be used to 
check numerical methods correctness or for setting initial 
guess during self-consistent calculations. 

Application of the Lorentsian functions is restricted 
by double-barrier RTD only. Superposition of the Lor-
entsian functions at zero bias is a good approximation of 
the transmission function, calculated by transmission 
matrices method at low energies (which are typically 
relevant); as energy approaches barrier height, deriva-
tion between the two functions becomes significant 
(Fig. 2). Under relatively small bias, given method pre-
serve the trends of the Airy functions method, slightly 
differing from it (Fig. 3). 

 
Figure 2. RTD transmission coefficient, calculated by the method of plane 

waves, numerically (both – 1) and method of Lorentzian functions (2). 

Lorentsian functions offer analytical approximation of 
transmission coefficient, and, consequently, allow fast and 
stable qualitative analysis. They are formulating through the 
energy levels and their broadening, which are intuitively un-
derstandable; other methods lack such kind of quantities. 

 
Figure 3. Transmission coefficient of RTD under 0.1 V and 

0.2 V, calsulated by Lorentsian functions method (1), plane-waves 
method (2), the Airy functions method (3). 

Quantitative modeling of devices with transverse elec-
tron transport is possible only by using numerical meth-
ods, which allows taking into account space charge and 
many-body effects [5]. If realized properly within linear 
voltage drop approximation, it should coincide with 
transmission matrices method, as shown in Fig. 2. 
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