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Abstract: Simplified analytical model for analysis of influence of the main parameters of resonant-
tunneling diode’s (RTD) topology on its static electric characteristics was developed. Analytical 
relations that relate electric characteristics of RTD with the main design parameters: widths of layers’ 
in active region, chemical compound of layers, doping level of reservoirs, lattice temperature were 
obtained. The results of modeling were tested for model structures of RTDs with barrier layers formed 
of AlxGa1-xAs and AlxGa1-xN. The model is free of numerical instabilities and adequately expresses the 
main tendencies in the dependencies of I-V characteristics’ parameters on the topology. It has been 
formulated such, that the computational resources are used efficiently and allow to trace the impact of 
all listed parameters on the energy structure of active region, and how those changes affect on the 
shape of I-V characteristics step-by-step. 

1. INTRODUCTION 

The modeling of resonant-tunneling diodes has 

passed several stages since invention. The formalisms 

of wave functions [1], Green’s and Wigner’s functions 

[2,3] were used by different authors since pioneering 

work [4] by present time. The way of improving 

consists in the procedure of self-consistency, accurate 

consideration of band structure of the corresponding 

materials and taking scattering processes into account 

[5]. Successive application of all mentioned 

components leads to enormous complications of 

modeling procedure. Although the numerical methods 

could be optimized, the connection between the 

topology of RTD and its electric characteristics 

became such that they could not be estimated by 

analytical relations, and understood intuitively. Under 

such conditions one should have the model that is 

complicate enough to reflect all main qualitative 

tendencies of electric characteristics depending on 

topology parameters of RTD and connecting them in 

an analytical way. Such tendencies should be used as 

a roadmap for device technologists at the initial stage 

of RTD designing. Then for quantitative analysis the 

more accurate and numerically extensive model 

should be used. 

2. MODEL 

Modeling procedure in the current work is divided 

into several problems solving successively: 

1. Search of the total number and the energy of 

energy levels in the quantum well, complete 

neglecting decaying possibility of metastable 

states. 

2. Search of the transmission coefficients for 

single potential barrier. 

3. Search of the quantity of the “natural” and 

“relaxation” decaying of the energy levels in 

the quantum well. 

4. Using quantities that were calculated for 

obtaining I-V characteristics of RTD. 

2.1. Total number of the levels 

If double-barrier quantum system (DBQS) formed 

by the layers of RTD is considered as a system that is 

able to decay, then the discrete levels, obtained under 

complete neglecting of decaying possibility will 

coincide with the most probable energy of the electron 

in the correspondent metastable state. 



DBQS with infinite barriers’ widths is the searched 

system with zero probability of decaying. Denoting 

the width of the quantum well by a, and the height of 

potential barrier by U0, and solving Schrödinger 

equation for such system, one can obtain the 

following two systems of equations, roots of which 

determine the positions of the energy levels. [6]: 
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where   is reduced Plank’s constant; E is energy of 

the longitudinal motion of electron; m* is effective 

mass of the electron in the well. 

The solution of the systems (1) and (2) is possible 

only if 1   or 1/   . In such region one of the 

systems (1) or (2) will have one root in the each of the 

intervals ( 1);
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Thus, the total number of the discrete levels 
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2.2. Level’s positions. 

Graphic interpretation (fig. 1) of the solution of 

systems (1) and (2) allows to restrict the area of 

research to the search of one root of one equation for 

each of intervals ( 1);
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It is arising from fig . 1, that eigenvalues of energy 

Еn for the first four energy levels defined from the 

following equations: 

 

Fig. 1. Illustration for graphycal solving of the systems (1) 

and (2). 
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As an example, searching the approximate 

analytical solution of (3), expanding cosine in the 

neighborhood of 0   and being restricted by two 

non-zero terms of series, one can obtain: 
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Positive root of (4) 2 1      , or, moving 

back to the usual denotes: 
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Analytical relations for any higher energy level (if 

such exist) can be found by the same way, expending 

corresponding function in the neighborhood of any 

border of interval, inside of which the solutions are 

searched. 

2.3. Transition coefficient 

The transition coefficient of potential barrier with 

the height U0 and width b could be calculated 

according to the relation: 
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In the present model ( )T E  considered to be 

independent from applied voltage V. Hereafter we 

assume that the voltage moves energy levels up by the 

quantity 
e

2

V
, so that for i-th level: 
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If 0iE U  such condition means that the voltage 

drops uniformly across the structure. 

2.4. “Natural” and “relaxation” broadening of 

metastable levels  

Energy spectrum of electron in the potential well, 

surrounded by potential barriers of the finite width, 

will be continuous in contrast to the case of barriers 

with infinite width. Although in such case there is 

selected magnitude of longitudinal momentum of 

electron in the well, where electronic wave function’s 

amplitude is much grater, than out of the well. The 

maximum amplitude of electronic wave in the well 

corresponds to the energy levels of the same system, 

but with zero probability of decaying. 

These levels are metastable, because electron will 

eventually leave the well and go to infinity through 

the one of barriers. Under conditions 
2

1iT   one 

can obtain the relation for calculation mean life time 

of electron on the metastable level [7]: 
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where 2(2 / )i iv E m  is a velocity of electron motion 

on the i-th resonant level, 1T  and 2T  are transition 

coefficients for 1-st and 2-nd barrier (they are 

determined by relation (5)) 

The width of these levels related to the mean life 

time of electron at this state in accordance with the 

uncertainty principle for energy: 

n
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, and referred as “natural” broadening of the 

resonant level. 

At the same time, scattering processes, existing in 

the potential well destroy the coherence of electron 

wave and appear in additional broadening of energy 

levels by the quantity of so-called “relaxation” 

broadening pE . The former is related to the 

momentum relaxation time p  by the relation: 

p
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The main kind of scattering in the intrinsic GaAs 

is polar optical scattering. Such kind of scattering is 

nonelastic. The most polar optical phonons have 

energy 0,035 eVo  . Thus, each scattering event 

changes electron energy by 0,035 eV  that is usually 

much grater then nE . This reduces the life time of 

electron on at the metastable level. That is why each 

level additionally broadens.  

Momentum relaxation time in the present work 

was calculated using relation for the optical-phonon 

scattering rate [8]: 
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, where Bk  is 

Boltzman constant, Т and Те are temperature of the 

lattice and electron’s temperature, respectively; 0K  is 

zero-order modified Bessel function of the second 

kind. 

The total broadening of the energy level 

n pE E E    . 

The quantity E  has clear physical sense: the 

probability of finding electron within this interval 

centered at the energy of the correspondent discrete 

level is equal to 1/ 2 . 

Transitional function for DBQS can be 

approximated by the sum of Lorentz-type functions: 



1

/
( )

( )
1 4

N
ni i

i ni

ni

E E
D E

E E V

E



 


 
  

 

 , (8) 

where index i denotes the number of discrete level. 

The current density was calculated using Tsu-Esaki 

formulation [9]: 
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where h  is Plank’s constant, FE  is Fermi level of the 

electrons in the emitter of RTD. 

Integration passes from the bottom of conduction 

band till the infinity (in the real cases one can use the 

level of vacuum as a superior limit) 

Assuming 0T   equation (9) can be rewritten as: 
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Resonance condition is possible in case of FV E . 

In case of consideration of quantum well with single 

energy level 1E , the result of integration (10) is as 

follows: 

 

*
2 1 1F 1 F 1 1

2 3

2 2
F 1

2 2
1

e
tan ( ) tan

2

1
ln .

2

    
         

   
 

  


n

E E E E Em
J E

E E E

E E E

E E

The maximum current density will be archived when 

the bottom of conduction band will coincide with 

energy level in the well (when 1 1(0) 0
2

eV
E E   ) 

Under such condition one can obtain the relation for 

maximum current density: 
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3. RESULTS OF MODELING 

Parameters of the modeling test structure which 

where used for model testing cited in the Fig. 2. 

Reservoirs (emitter and collector of RTD) is formed 

from heavily doped GaAs (donor’s atom 

concentration ND = 1024 m-3). Barrier layers is formed 

from Al0.33Ga0.67As, quantum well is formed from 

GaAs. Barrier layers and well layer are both undoped. 

Effective mass of the electron in the compound 

AlxmGa1-xmAs is determined by empirical relation: 

*( ) 0.15 0.067 (1 )m m mm x m x m x     , where m is 

the rest mass of electron. 

Conductance band discontinuity CBE , that is 

equal to the height of potential barrier, can be 

calculated by empirical relation [10]: 

AlGaAs GaAsBG BG0.62( )CBE Å Å     [eV], where 

AlGaAs
 BGÅ  and 

GaAs
 BGÅ  – energy gap width for 

AlGaAs and GaAs, respectively. For arbitrary molar 

fraction of aluminum xm in the compound       AlxmGa1-

xmAs the energy gap width could be calculated as: 

( ) (1.42 1.247 )  BG m mE x x  [eV]. 

Fermi level FE  relative to the bottom of 

conduction band is determined as for heavily doped 

semiconductor: 
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, where ND is donor’s atom 

concentration (all donor impurity considered to be 

ionized). 

 

Fig. 2. Topology, position and widths of energy levels for 

test structure. 

 



 

Fig. 3. Transmission probability versus longitude electron 

energy. 

 

 

Fig. 4. I-V characteristics of resonant tunneling diode. 

4. CONCLUSION 

Developed model allows tracing cause-and-effect 

relations between design parameters of RTD and 

electric characteristics that expected to show such 

structure. The model is developed in such a way, that 

before I-V characteristics calculations the quantities to 

be computed also have direct physical senses. They 

are: numbers of energy levels in the quantum well, life 

time of electron states in the well, their widths (both 

“natural” and “relaxation” widths and their sum), and 

transmission coefficients for single barrier and for 

DBQS as a whole. Maximum pick current can be 

calculated as an analytical function of all mentioned 

parameters. 
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