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Abstract: Fast and stable stationary numerical model of electronic transport in resonant-tunneling 
diode (RTD) was developed. It was derived from the density functional method, applying assumption 
about the absence of exchange-correlation term. The model correctly describes interaction between 
quantum and semi-classical regions of RTD. Self-consistence between space charge and potential can 
be achieved for all relevant RTD structures. The results of modeling were tested for the model 
structures of RTDs with barrier layers formed of AlxGa1-xAs and AlxGa1-xN. There is a possibility of 
efficient visualization of modeling results, such as local density of states, potential and electron 
concentration in active region. 

1. INTRODUCTION 

The modeling of resonant-tunneling diodes 

has passed several stages since its invention. The 

formalisms of wave functions [1], Green’s and 

Wigner’s functions [2,3] were used by different 

authors since pioneering work [4] by present 

time. The way of improving consists in the 

procedure of self-consistency, accurate 

consideration of band structure of the 

corresponding materials and taking scattering 

processes into account [5]. Successive application 

of all mentioned components leads to enormous 

complications of numerical modeling procedure. 

Under such conditions appropriate numerical 

methods have to be used. Two main demands for 

numerical methods used in a given work was 

made: correct formulating of numerical 

algorithms taking physical processes that expect 

to take place in the device into account (1), and 

choosing as fast numerical method as possible 

under the stipulation that it will reflect the actual 

physical picture (2). 

2. ASSUMPTIONS 

The most fundamental assumptions made in the 

developed model are as follows. 

The model is quasi-one-dimensional. The only 

charge carriers to be considered are electrons in 

conduction band. In the active region of the structure 

electrons considered to be quasi-particles when they 

move along the planes of heterostructure’s layers. At 

the same time, electrons considered to be quantum 

particles at the active region and characterized by 

wave functions, depending on the fields, in which 

electrons move. The whole nanostructure divides into 

3 regions: left and right reservoirs and active region 

corresponding to fig. 1. Electron’s collective at the 

left and right reservoirs considered to be at local 

equilibrium, each with one’s Fermi level, L

FE  and R

FE  

consequently, while electron gas at the active region 

is far from equilibrium and cannot be characterized by 

means of even modified Fermi-Dirac statistics. 

Our goal is to find electron transmission function 

T(Ex), where Ex = px
2
/2m

*
, where px is x-component of 

electron’s momentum, m
*
 – transverse effective mass. 

The search of this function is an only significant 



challenge in a way of finding I-V characteristics by 

original Tsu-Esaki formulation [4] or some of its 

modifications [1]. 

 

Fig. 1. Model formalization 

In order to find, transmission probability for 

electron that has energy E and move from right (left) 

reservoir T(E) it is necessary to describe Hamiltonian 

Ĥ  of the open system that is an active region. Then, 

implying electron as a spinless particle, T(E) can be 

found, solving stationary Schrödinger equation 

Ĥ Eψ = ψ  (1) 

for envelope function ψ  of electron state [5]. Spin is 

then taken into account by usual way. Potential 

energy term U(x) in overall Hamiltonian Ĥ consists 

of three terms if neglecting exchange-correlation 

term: 
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where ( )CE x  is energy of the bottom of conduction 

band, V(x) is an applied voltage (it applies such that 

potential of the right reservoir is enhancing), ( )SCFU x  

is potential energy of electron’s interaction with all 

other electrons, which are considered as a “space 

charge” (this, in turn, imply that exchange-correlation 

term is equal to zero). 

The last is to be found from Poisson equation: 

0

( ) ( ( ) ( ))
( ) SCF DdU x e n x N xd
x
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+− 
ε = 

ε 
, (3) 

where n(z) is electron concentration, ( )DN x
+  is a 

concentration of ionized donor’s atoms, ( )xε  is 

relative dielectric permittivity, 0ε  is dielectric 

constant. 

As electron in the right and left reservoirs are 

assumed to be spinless quasi-particles being in local 

equilibrium, each electron individually describes 

there by the wave-function that is a linear 

combination of plane waves as it is shown at fig. 1. 

Therefore, we know the behavior of electrons in 

reservoirs a priory. 

3. MODEL 

Modeling procedure consists of the following steps: 

1) Search for wave-functions of electron having 

energy E that arrive to the active region from the 

ensemble of left/ right reservoir, Lψ  and Rψ  

consequently; 

2) Search for so-called “partial concentration” of 

electrons, nL and nR in the active region of RTD, using 

properly normalized electron wave functions. Their 

sum is equal to total electron concentration in active 

region n; 

3) Solving Poisson equation (3) and equation for n(x) 

(to be derived below) self-consistently, using n(x) as 

initial approximation. The results are self-consistent 

potential U(x) which can be used for finding T(E) by 



usual procedure (for example, dividing of active 

region into piecewise linear regions and applying 

transfer-matrix formalism [4]); 

Then, using T(x) one can calculate current density by 

Tsu-Esaki formulation. 

3.1. Wave functions and ensembles 

Behavior of electron at active region with energy 

close to E depends on from what ensemble it came 

from: namely from the left or from the right reservoir. 

This means that state of electron at the active region 

is mixed [5]. In order to take this into account, wave 

functions of the electrons, came from both reservoirs 

Lψ  and Rψ  were found separately for each reservoir. 

Difference between Lψ  and Rψ  is explained by 

different “initial conditions”: it implies that electron 

moving from left to right ( 0xk > ), when searching 

Lψ  and backward ( 0xk < ) if vice-versa, when 

searching Rψ . In both cases we assume that 

probability density in incident electron wave is equal 

to one and there is no reflected wave from the last 

region (which is right reservoir for Lψ  and left 

reservoir for Rψ  (fig. 1)). 

Using knowledge of wave function in reservoirs, 

substituting Schrödinger equation in active region by 

the systems of algebraic equation at the discrete 

points of structure ( 1)ix i= ∆ −  and using general 

demands for wave function at the boundaries between 

reservoirs and active region, one can obtain the 

following finite-difference scheme for Lψ : 

ˆ
L L L=H ˵ C˵ C˵ C˵ C , (4) 

where: 
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Finite-difference scheme for search of Rψ  is: 

ˆ
R R R=H ˵ C˵ C˵ C˵ C , (5) 

where 
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where: 

T
1 2[ , , ... , ]R N= ψ ψ ψ˵˵˵˵ , 

T[0,0,...,2i ]Rik L
R Rk e

−= ∆C . 

These two systems of equations were solved by 

means of simplified Tomas method [6] as matrixes 

( )
ˆ

R LH  are tridiagonal. Mentioned method is the faster 

in this case and allows reducing computation time in 

200 times compared to the common procedure, which 

implying matrix inverting. 

The results of solving of (4) and (5) are non-

normalized wave-function Lψɶ  and Lψɶ  that assumed 

to be related to properly normalized functions so that 

( ) ( ) ( )L R L R L RCψ = ψɶ , where  ( )L RC  are some 

constants to be found. 

3.2. Partial concentrations 

Let’s introduce two quantities for active region: 

2
( , , , ) ( , , ) ( )L x act L x actg E eV x E eV x g= ψk k , 

2
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They will have a physical sense of local density of 

states of electrons, originated at left (right) reservoir. 

Using the conception of local densities of states 

for calculation of correspondent concentration, one 

can obtain formulations for partial concentrations nL 

and nR: 
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 is a Fermi 

function of electrons in reservoirs; Vact is net voltage 

drop at the active region, Fk  is a Fermi wave vector. 

Integration by z and y (it can be performed 

analytically) and defining of CL(R) will give: 
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Integration in (6) where performed by means of 

Simpson algorithm, which work with many points x at 

the same time. It was developed on the basis of 

standard Matlab procedure “quad”, using 

modifications, which allow working with matrices as 

input arguments. 

3.3. Self-consistent procedure 

Finite-differences scheme that corresponds to 

Poisson equation with boundary conditions of the 2nd 

type at the active region’s boundaries is as follows: 
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for all internal points, and for boundaries we assume 

that 1 2U U=  and 1N NU U− = . Here notation iN was 

used, which is the same as ( )D iN x
+ . 

Equation (6) and (7) are being solving self-

consistently, using linearized iterative procedure, 

which is well convergent, if boundary conditions 

formulated properly [1]. 

4. RESULTS 

The density of electron states at the active region 

of the simulated RTD under applied voltage 0.05 V 

and dependence of electron concentration on applied 

voltage are shown at Fig. 2 and Fig. 3 consequently. 

The lengths at the fig. 1 are as follows: barriers’ 

thickness b = 5.6 nm, well’s thickness a = 5 nm, 

spacer’s thickness c = 5 nm. Donor impurities’ 

concentration in reservoirs ND = 10
23

 m
-3

; molar rate 

of Al in AlxGa1-xAs x = 0.33. The following pictures 

imply that the structure, depicted at Fig. 1 are 

centered at the point z = 25 nm. 

 

 

Fig. 2. Density of states g along active region versus 

transverse electron energy E. Narrow red strip 

correspondent to metastable energy level. 

 



 

Fig. 3. Dependence of electron concentration n along active 

region on applied voltage. Wide red strip at the center 

corresponding to charge accumulation at the quantum well. 

5. CONCLUSION 

Model of RTD’s static characteristics were derived 

from the density functional method and assumption of 

absence of exchange-correlation term. Simulation 

procedure was developed, using Matlab. 

Computational algorithm of simulation procedure was 

realized in a way that allows reducing computational 

time and is computationally stable enough. 

The further work will be directed at the 

incorporation of scattering effects into current model 

and further improvement of visualization as well as 

computational time further reducing. 
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