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Pattern Recognition in the Pacemaker Intracardiac Impedance Signal

MpeanoxeH Meroa pacno3HaBaHus obpa3oB
CHIrHaNoB BHYTpUCEpPAEYHOro UMneaaHca Ha ocHoBe
pa3noXeHWs KoBapHaLUMOHHOW MaTpMubl aHcambns
KapanocHrianos B 6asnce ero coGCTBEHHLIX BEKTO-
poB. AMINUTYALI BbIYUCNEHHbIX NPOSKUWW B Npeot-
pPas’oBaHHOM NPOCTPAHCTBE OTPAXAOT WHAWBUAY-
anbHbie 0OCOBEHHOCTH AMHAMUKW MWOKapaa U SBNA-
I0TCA ONTUMaNbHbIMU AUArHOCTUYECKUMMU Napamert-
pPaMK COCTOSHUS! MauMeHTa npu ¢pOPMHUPOBAHUMU
obyuatowux BbIBOPOK AN KnaccugmkaTopa.

PaccmoTpeHbl anropuTMbl obpabGoTku kKapauo-
CUrHanoB AN Knaccudukauum AUHAMUUYECKUX YyC-
NoBUW MMOKapAa nauMenta. PesynbTaTtbl Nokasbl-
BaloT, 4TO onpegerieHHble TakUM obpasoM AuarHo-
CTHYecKMe Napamerpbl MOTYT ObiTh UCMONBL3OBaHbI
AnA pacnosHaBaHus oBpa3oB U3MEHAIOWENHCH remMo-
AWHAMMKKW U MOTYT ObiTb peann3oBaHbl Kak KNaccu-
chukatopbl KOMaHA Ans NOACTPOWKWM 4YacToTbl Kap-
AHOCTHMYNATOPA.

A method for pattern recognition of intracardiac
impedance signal variation is proposed based on
decomposition of the covariance matrix for the car-
diac signal ensemble in its eigenvector basis. Magni-
tudes of the calculated projections in the trans-
formed space reflect individual features of myocar-
dium dynamics and present optimal diagnostic pa-
rameters of the patient state while forming learning
samples and creating a pattern classifier.

Algorithms of the cardiac signal processing are
considered for classification of dynamic conditions
of patient's myocardium. The results demonstrate
that thus defined diagnostic parameters can be used
for pattern recognition of changing hemodynamics
and can be implemented as command qualifiers for
adjustment of pacing frequency.

Introduction

Access to physiological information is very important
for diagnostics of cardiac hemodynamic disorders and for
appropriate adjustment of therapy, e.g. cardiac pacing
appropriate to the state of the cardiovascular system. For
this purpose, diagnostic features in the form of parame-
ters of intracardiac electrograms in time domain [1-4] or
decomposition coefficients in different coordinate bases
[1-7] can be used.

Complex regulation of the cardiovascular system is
based on interrelated multilevel loops including the heart
and the peripheral vessels, higher neural centres, different
receptors (baroreceptors, chemoreceptors, etc.), afferent
and efferent neural paths enabling positive and negative
feedback within the whole closed loop system. Normally, to
satisfy the increasing hemodynamic needs of the human
body under increasing load (physical or emotional) the
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regulation centres stinulate increases in the heart humping
frequency and in the stroie volume. In pathology, chiono-
tropic incompetence, due tc failing sinus node function
or/and intracardiac conduction a,Sturbances, can be com-
pensated through electrical therapy w;*h the aid of a pace-
maker incorporating a rate-adaptive senso” Of course, sen-
sors assessing relevant physiological informar>h on hemo-
dynamic needs have highest priority.

The Closed Loop Stimulation (CLS) system use.” the
so called contractile sensor measuring the intracardia’
impedance signal that reflects changes in myocardium
contractility. The algorithm principle is based on the well-
known physiological mechanism of chronofropic incom-
petence compensation through increase of heartbeat
force. Inotropic compensation of insufficient chronotropic
furiction leads to variation. of phase structure of cardiac
cycle, in particular, to shortening of its diastolic phase
and pre-gjection period (PEP). Phase shiit of the in-
tracardiac impedance signal (Fig. 1) is used by the CLS
pacemaker as a parameter for evaluation of physiclogical
need in heart rate increase [8]. The parameter is calcu-
lated by the pacemaker as the integral surface confined
between the impedance signal curves measured at rest
(reference) and at load (current curve).

Heartbeat frequency regulation, based on the principle
described above, is physiological, as the regulation parame-
ter is linked to regulation of cardiac function by autoriomous
nervous system (ANS). Thus, replacing the chronotropic
function of the sinus node the pacemaker becomes a part of
the closed loop system regulating the heart rate. After
automatic calibration procedure, during which impedance
signal curves in a certain time window of the cardiac cycle
(Fig. 1) are evaluated for a certain patient in rest and under
physical load, the pacemaker stimulates the heart at fre-
quency, necessary to satisfy hemodynamic needs both at
physical and mental stress [9, 10].

Generally, to account for variety of heart function
changes, a rather detailed cardiac signal description is
needed, generating data arrays of large dimensionality.
That leads to complexity of the signal pattern recognition
process. Besides the above described algorithm imple-
mented in the CLS pacemaker, the intracardiac imped-
ance signal has been used to recognize the patient state
in several other approaches, i.e. based on creation of
ensembles of impedance curve parameters [2] and self-
learning neural networks [3]. In attempt to minimize the
number of diagnostic features of hemodynamic changes,
we elucidate here another approach to form optimal
learning samples and to classify patterns in transformed
subspaces of cardiac signals. The coordinate basis of
the new subspaces is composed of the covariance matrix
main eigenvectors of the intracardiac impedance signal
ensembles obtained with the aid of the CLS-pacemaker.
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Fig. 1. Variation of the impedance signal under load due to shortening of the diastolic phase of cardiac cycle,

namely to shortening of pre-ejection period (PEP)
Materials and methods

To provide pattern recognition of intracardiac imped-
ance signals the following two steps are used (Fig. 2):
¢ selection of diagnostic features of the patterns;

e creation of pattern classifier.

The corresponding cardiac signals can be discretely
sampled n times for each heartbeat yielding sequences
of n values, i.e. n-dimensional vectors, used then as ba-
sic data. To use that kind of data for discrimination of
different myocardium conditions a set different well de-
fined stationary (or quasi-stationary) patients’ states must
be elaborated.

Selection of diagnostic features of the n-dimensional
vectors characterizing the impedance signal is a primary
task. It can be accomplished in two steps. First, the data will
be orthogonally transformed into the basis of eigenvectors.
That provides one to one data mapping that preserves the
dimensionality of the vectors. Their components now are
new coefficients in the transformed domain.

To reproduce specific features of the intracardiac
impedance signal the sampling rate should be high
enough. On the other hand, the higher the input data
dimensionality, more complicated is the pattern classifier.
Thus, as a second step, it is crucially important to reduce
the dimensionality (r<n) still preserving significant signal
features (components). A new set of parameters /i,
L, ... I, | i.e. the applied transformation, should result in
generation of patterns with maximal distances between
the vector groups belonging to different patient states,
yet retaining the distances constant inside the groups.

According to the method of eigensubspaces
[5-7,11], any set of cardiosignal realizations, i.e.
n-dimensional vectors, reflecting a complex process of
myocardium excitation and movement, can be associ-
ated with its own system of eigenvalues and eigenvec-
tors. The cardiosignal realizations can be expanded in
the eigenbasis, i.e. their projections on the eigenvectors
can be calculated. These projections (vector

components) as well as their integral characteristic, e.g.
a total sum of the component squares, can be used for
the signal description. The defined characteristic has a
very important feature for the qualification process — it
possesses maximal contribution of the values of the car-
diosignal expansion on eigenvectors of “its own” group.

A classification process of n-dimensional realizations
of intracardiac impedance signals in the coordinate basis
of the eigenvectors [12] begins with composition of a
cardiosignal ensemble from several signal realizations
measured in a sequence of heartbeats. Each observation
(sampling) window should be synchronized with some
definite cardiac cycle phase, e.g. with the stimulating
pulse. Each cardiosignal realization in the observation
window presents an array of n discrete values of the
signal:

E1 =€91, €12, ..y €

Ey =e31, €29, €2p
: (1)

Em =€m1: €m2:-- €mn»

where Eq, Bz, ... En, form an ensemble of realizations of
the intracardiac impedance signal, erj(j=1,2, ..., n) are
discrete signal values, m is the number of the signal reali-
zations (heartbeats), and n is the signal sampling factor.

The ensemble of E; (i = 1, 2, ..., m) in the form of (1)
can be used as a learning sample in order to determine
the parameters of affiliation to different groups of the
cardiac state Kk (k=1,2, ... V). To learn classification
means to determine Kk, derived on Ej, relevant not only
for the learning sample E; but also for any ensemble E of
cardiosignals [5, 6, 11]. Figure 3 depicts the algorithm of
such signal classification. Analysis of patterns of myo-
cardium dynamics reflected in signals of intracardiac
impedance is based on group description in the trans-
formed coordinate basis of eigenvectors defined on
sampled signal amplitudes.

Selection of diagnostic signs of the pattern

Transformation »
of the signals
into eigen subspaces
E of the patterns !

Reduction
of the dimension
of pattern space

Creation
of pattern classifier
Groups
of myocardium condition

Registration of intracardiac
impedance signals

Fig. 2. Flow chart of the pattern recognition process for intracardiac impedance signals
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According to the method of eigensubspaces [7, 11],
the covariance matrix of the ensemble of cardiosignal
realizations, obtained for each group, has the following
expansion in the coordinate basis of eigenvectors

Vi, Vo, ... Vi corresponding to eigenvalues
X1, Xz,...,xn .
C= }’ix-v.vf : (2)
= ISP}

The eigenvectors Vi, Vs, ... V, of the form (2) are or-
thonormal and ordered according to the appropriate ei-

genvalues A4 2A, 2...2A,, the main eigenvectors

Vi, Vo, ... Vi corresponding to the greatest eigenvalues
M2Ahy 2. 24,

Each cardiosignal E;j can be presented then as a set
of decomposition coefficients — projections on the V]
basis vectors of the eigensubspace of the g—th group:

b =(Ev}) ©

The decomposition coefficients by, in the basis of
main eigenvectors obtained as a result of inner product
of the ensemble of the impedance signal realizations E;,
E;, ... En with main coordinates Vi, V2, ... V; reflect ba-
sic information on the patient’s heart state. These coeffi-
cients can be used in a classification algorithm as new
subsets of diagnostic features of lower (r<n) dimension.

When q#k, the signal E belongs to a different

group, with = 5% and )»12’ values differing more, the
more different are the groups k and g, and, conse-
quently, the more different are their eigensubspaces.
Then, projection of the signal E; onto the ij’ eigenvector

of the “strange” group q is equal to:
1
q .. khkyah . 4
b -Z‘%b,, <v,. vj> (4)
l=

While creating the classifier, it is recommended to
use the quantitative characteristic of E; cardiosignal de-
composition on main vectors of the eigensubspace of the
group K, i.e. Hy , which represents a square of the signal
E; projection:

< N\ E k2
Hy = ﬁ(E,,v, ) = Y52 (5)
j=1 j=
Where r¢ is dimension of the eigensubspace, built

on the main eigenvectors of the group k.
In view of the fact, that the introduced characteristic

is maximal for the cardiosignal Ei expansion on the

main vectors of the eigensubspace of its group, the clas-
sification criterion can be formulated as follows:

i g =He—Hg>0,9=12..,v (qzk),
then K=k" (6)

One of the ways to achieve the maximal distance be-
tween the groups is to select the dimension of the trans-
formed subspace of the patterns’ features. In order to
maximize the difference between expansion characteris-
tics of intracardiac impedance signals on the vectors of
their own group and the vectors of the different groups, it
is necessary to select the dimension of the subspace of

main eigenvectors of each group rx=ry, ..., ¥, in the

v
proposed algorithm (Fig. 3), so that the maximum of the
form (6) would be provided.

Start )

Registration and preliminary
processing of intracardiac
impedance signals

Transformation into the space
of eigenvectors of the covariance
matrix of signal assembly

<

y

Determination of signal projections
on main eigenvectors

Creation of classifier by the maximum
of total projections

Variation
of dimension
of eigenspace

No E

Measure of deviation
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impedance signals

End

Fig. 3. The classification algorithm for intracardiac
impedance signalsWith g =k, the signal E; is pro-
jected onto the subspace vectors of the same group,
to which it belongs. Therefore the projections, calcu-
lated according to (3), would allow the most precise
representation of the E; by a linear combination of
eigenvectors. Besides that, the square of E; signal
projection on V; vector is larger, the larger is the
corresponding eigenvalue A; , according to the
properties of decomposition in the basis of eigen-
vectors.

Thus, according to determined rx values of the ana-
lyzed proper subspaces, the ordered feature set of in-
tracardiac impedance signals of lower dimension could
be used.

Results

The described discrimination algorithm has been
tested on sets of intracardiac impedance signals ob-
tained for 70 patients with the CLS pacemaker implanted
for rate adaptive heart pacing. The impedance signal has




164

QneKTpoHUKa 1 CBA3b. TeMaTudeckuii Boinyck «Ipobrembl anexTpoHuku», 4.2, 2008

been measured on the electrode located in the right ven-
tricle apex against the pacemaker housing (Fig. 1) [1].
The signal has been sampled at frequency of 128 Hz in a
time window of 47+289 ms after ventricular excitation,
giving thus a set of 32 amplitude values for each heart-
beat.

Intracardiac impedance signals have been measured
for each patient in four stationary states with different
levels of physical activity, corresponding to four different
conditions of myocardium dynamics:

¢ group | — “physical exercise, standing or sitting” —
exercise (“exr”);
¢ group Il - “frequent (overdrive) stimulation in rest,

sitting” — overdrive (“ovr”);
¢ group lll —“rest, sitting” — rest (“rst”);
* group IV - “rest, supine” — supine (“sup”).

Characteristic impedance signals measured in one
of the patients in the four different myocardium states are
presented in Figure 4. Learning samples of nomalized
realizations of intracardiac impedance signals were cre-
ated for each condition state (group), the size of learning
samples varying from 10 to 30 realizations. An example
of a learning sample of 30 realizations, corresponding to
the group 3 ~ hemodynamic state in the sitting position
without physical exercise, is shown for one of the pa-
tients in Figure 5.

impedance signals
170 T T —

y1y2.8.y4, [au]

120 L A t p =t
0 5 10 15 20 25 30 35

samples

Fig. 4. Characteristic signals of intracardiac imped-
ance measured in one of the patients in four different
states: exr — exercise, ovr — overdrive, rst - rest (sit-
ting), sup ~ supine (rest)

The signals not applied for the learning procedure
were used for the discrimination algorithm verification. in
numerical experiments on pattern recognition of intracar-
diac impedance signals, covariance matrices of ensem-
bles were composed of selected realizations; proper sub-
spaces and total projections on three main eigenvectors
in “native” and “strange” subspaces were defined.

Test-sequences of each group were delivered to the
classifier in turns.

{mpedance signale

Y{(1°30), ([a.u.}

1m | I 1 1 | S— L
& 10 15 20 26 0 35 40

samples(3:1:40)

Fig. 5. An example of a learning sample: 30 meas-
ured signals of intracardiac impedance measured in
one of the patients in the sitting position without
physical load (rest state)

Table 1 presents the values of the state features —
total projections of 31-th test realization of the signal en-
semble for each group after the expansion in eigensub-
spaces of the groups 1, 2, 3and 4.

The results of 31st intracardiac impedance test sig-
nal's classification for groups 1-4, shown in Table 1,
demonstrate the maximal values of the signs, character-
istic for recognition of the “own” group.

Conclusion

The numerical experiments on pattern recognition of
intracardiac impedance signals in 70 patients have con-
firmed theoretical considerations of the method of eigen-
subspaces. All the signals of learning sample were cor-
rectly referred to their groups with the integral criterion
features —maximal values of total projections in the basis
of three main eigenvectors. For the test signals, not in-
cluded into the learning sample, the indices of classifica-
tion sensitivity varied in the range of 78+97%.

Still, the data presented in Table 1 in some cases
show very small differences between the values of total
projections on the “native” and on the “strange” groups,
e.g. the test signal of group lll in eigensubspaces of
groups !l and V). This phenomenon occurs in cases of
relatively close location of eigensubspace domains for
different groups in certain patients and could reflect the
existence of peculiarities in their heart function. It should
be noted that the conditions of groups Hll and IV, both
corresponding to the physiological condition of rest (in

Table 1. Total projections of test signals of groups I-IV in “native” and “strange” subspaces

Test sequences Group | Group Il Group llI Group IV
realization 3| Group | 0.9997 0.8976 0.7563 0.8567
realization 3! Group Il 0.9727 0.9879 0.9017 0.8251
realization 3} Group Il 0.9535 0.8773 0.9883 0.98901
realization 3| Group [V 0.8812 0.9672 0.9764 0.9986
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Fig. 6. Sensitivity index of classification of intracar-
diac impedance test signals, depending on the size
of learning sample, in 3 patients (P1, P2, P3)

sitting and supine positions, respectively) are the
most similar, though, in absence of pathology, are char-
acterized by different contractile function of myocardium
and its dynamics. The investigations were carried out in
patients, suffering from cardiac rhythm abnormalities and
often having decreased dynamic reserves of myocar-
dium, which leads to still higher approximation of differ-
ent, but similar enough groups of myocardium dynamics
condition.

Generally, in order to increase the degree of diver-
gence between the groups, it is necessary, besides the
selection of proper subspace dimension, to pay attention
to the creation of learning sample. The influence of its
size on the authenticity of the obtained results is shown
in Figure 6. Its necessity is also conditioned by the fact
that, as mentioned before, the contractile CLS sensor
responds to both physical and mental stress, and the
level of the latter one can hardly be controlled in the ex-
periment.

Furthermore, additional procedures for transforma-
tion of different states eigensubspaces can be applied
that could increase their discrimination accuracy.

Thus, it has been demonstrated that the method of
eigensubspaces enables discrimination of patterns of
intracardiac impedance signals, based on strongly re-
duced number of parameters — total projections in the
basis of major eigenvectors of covariance matrix of sig-
nal ensembles. Differential criteria of intracardiac signal
features in the bases of “native” and “strange” signal
groups can be used for determination of the signal vector
eigensubspace dimension. Diagnostic features — here,
total projections of intracardiac impedance signal vectors
— can be used in rate adaptive pacemaker algorithms.
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