
Description of the Algorithms  (Part 1)

 The steps involved in simulating a communication channel using convolutional encoding and Viterbi

decoding are as follows:

Generate the data to be transmitted through the channel-result is binary data bits

Convolutionally encode the data-result is channel symbols

Map the one/zero channel symbols onto an antipodal baseband signal, producing transmitted

channel symbols

Add noise to the transmitted channel symbols-result is received channel symbols

Quantize the received channel levels-one bit quantization is called hard-decision, and two to n bit

quantization is called soft-decision (n is usually three or four)

Perform Viterbi decoding on the quantized received channel symbols-result is again binary data bits

Compare the decoded data bits to the transmitted data bits and count the number of errors.

Many of you will notice that I left out the steps of modulating the channel symbols onto a transmitted

carrier, and then demodulating the received carrier to recover the channel symbols. You're right, but we

can accurately model the effects of AWGN even though we bypass those steps.

Generating the Data

Generating the data to be transmitted through the channel can be accomplished quite simply by using a

random number generator. One that produces a uniform distribution of numbers on the interval 0 to a

maximum value is provided in C: rand (). Using this function, we can say that any value less than half

of the maximum value is a zero; any value greater than or equal to half of the maximum value is a one.

Convolutionally Encoding the Data

Convolutionally encoding the data is accomplished using a shift register and associated combinatorial

logic that performs modulo-two addition. (A shift register is merely a chain of flip-flops wherein the

output of the nth flip-flop is tied to the input of the (n+1)th flip-flop. Every time the active edge of the

clock occurs, the input to the flip-flop is clocked through to the output, and thus the data are shifted over

one stage.) The combinatorial logic is often in the form of cascaded exclusive-or gates. As a reminder,

exclusive-or gates are two-input, one-output gates often represented by the logic symbol shown below,

that implement the following truth-table:

 

Input

A

Input

B

Output

(A xor B)

0 0 0

0 1 1

1 0 1

1 1 0
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The exclusive-or gate performs modulo-two addition of its inputs. When you cascade q two-input

exclusive-or gates, with the output of the first one feeding one of the inputs of the second one, the output

of the second one feeding one of the inputs of the third one, etc., the output of the last one in the chain is

the modulo-two sum of the q + 1 inputs.

Another way to illustrate the modulo-two adder, and the way that is most commonly used in textbooks, is

as a circle with a + symbol inside, thus:

Now that we have the two basic components of the convolutional encoder (flip-flops comprising the shift

register and exclusive-or gates comprising the associated modulo-two adders) defined, let's look at a

picture of a convolutional encoder for a rate 1/2, K = 3, m = 2 code:

In this encoder, data bits are provided at a rate of k bits per second. Channel symbols are output at a rate

of n = 2k symbols per second. The input bit is stable during the encoder cycle. The encoder cycle starts

when an input clock edge occurs. When the input clock edge occurs, the output of the left-hand flip-flop

is clocked into the right-hand flip-flop, the previous input bit is clocked into the left-hand flip-flop, and a

new input bit becomes available. Then the outputs of the upper and lower modulo-two adders become

stable. The output selector (SEL A/B block) cycles through two states-in the first state, it selects and

outputs the output of the upper modulo-two adder; in the second state, it selects and outputs the output of

the lower modulo-two adder.

The encoder shown above encodes the K = 3, (7, 5) convolutional code. The octal numbers 7 and 5

represent the code generator polynomials, which when read in binary (111
2
 and 101

2
) correspond to the

shift register connections to the upper and lower modulo-two adders, respectively. This code has been

determined to be the "best" code for rate 1/2, K = 3. It is the code I will use for the remaining discussion

and examples, for reasons that will become readily apparent when we get into the Viterbi decoder

algorithm.

Let's look at an example input data stream, and the corresponding output data stream:

Let the input sequence be 010111001010001
2
.

Assume that the outputs of both of the flip-flops in the shift register are initially cleared, i.e. their outputs

are zeroes. The first clock cycle makes the first input bit, a zero, available to the encoder. The flip-flop

outputs are both zeroes. The inputs to the modulo-two adders are all zeroes, so the output of the encoder is

00
2
.
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The second clock cycle makes the second input bit available to the encoder. The left-hand flip-flop clocks

in the previous bit, which was a zero, and the right-hand flip-flop clocks in the zero output by the

left-hand flip-flop. The inputs to the top modulo-two adder are 100
2
, so the output is a one. The inputs to

the bottom modulo-two adder are 10
2
, so the output is also a one. So the encoder outputs 11

2
 for the

channel symbols.

The third clock cycle makes the third input bit, a zero, available to the encoder. The left-hand flip-flop

clocks in the previous bit, which was a one, and the right-hand flip-flop clocks in the zero from two

bit-times ago. The inputs to the top modulo-two adder are 010
2
, so the output is a one. The inputs to the

bottom modulo-two adder are 00
2
, so the output is zero. So the encoder outputs 10

2
 for the channel

symbols.

And so on. The timing diagram shown below illustrates the process:

 

After all of the inputs have been presented to the encoder, the output sequence will be:

00 11 10 00 01 10 01 11 11 10 00 10 11 00 11
2
.

Notice that I have paired the encoder outputs-the first bit in each pair is the output of the upper

modulo-two adder; the second bit in each pair is the output of the lower modulo-two adder.

You can see from the structure of the rate 1/2 K = 3 convolutional encoder and from the example given

above that each input bit has an effect on three successive pairs of output symbols. That is an extremely

important point and that is what gives the convolutional code its error-correcting power. The reason why

will become evident when we get into the Viterbi decoder algorithm.

Now if we are only going to send the 15 data bits given above, in order for the last bit to affect three pairs

of output symbols, we need to output two more pairs of symbols. This is accomplished in our example

encoder by clocking the convolutional encoder flip-flops two ( = m) more times, while holding the input
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at zero. This is called "flushing" the encoder, and results in two more pairs of output symbols. The final

binary output of the encoder is thus 00 11 10 00 01 10 01 11 11 10 00 10 11 00 11 10 11
2
. If we don't

perform the flushing operation, the last m bits of the message have less error-correction capability than

the first through (m - 1)th bits had. This is a pretty important thing to remember if you're going to use this

FEC technique in a burst-mode environment. So's the step of clearing the shift register at the beginning of

each burst. The encoder must start in a known state and end in a known state for the decoder to be able to

reconstruct the input data sequence properly.

Now, let's look at the encoder from another perspective. You can think of the encoder as a simple state

machine. The example encoder has two bits of memory, so there are four possible states. Let's give the

left-hand flip-flop a binary weight of 21, and the right-hand flip-flop a binary weight of 20. Initially, the

encoder is in the all-zeroes state. If the first input bit is a zero, the encoder stays in the all zeroes state at

the next clock edge. But if the input bit is a one, the encoder transitions to the 10
2
 state at the next clock

edge. Then, if the next input bit is zero, the encoder transitions to the 01
2
 state, otherwise, it transitions to

the 11
2
 state. The following table gives the next state given the current state and the input, with the states

given in binary:

 

 

 Next State, if 

Current

State

Input = 0: Input = 1:

00 00 10

01 00 10

10 01 11

11 01 11

The above table is often called a state transition table. We'll refer to it as the next state table. Now let

us look at a table that lists the channel output symbols, given the current state and the input data, which

we'll refer to as the output table:

 

 

Output Symbols, if

Current

State

Input = 0: Input = 1:

00 00 11

01 11 00

10 10 01

11 01 10

You should now see that with these two tables, you can completely describe the behavior of the example
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rate 1/2, K = 3 convolutional encoder. Note that both of these tables have 2(K - 1) rows, and 2k columns,

where K is the constraint length and k is the number of bits input to the encoder for each cycle. These two

tables will come in handy when we start discussing the Viterbi decoder algorithm.

Mapping the Channel Symbols to Signal Levels

Mapping the one/zero output of the convolutional encoder onto an antipodal baseband signaling scheme is

simply a matter of translating zeroes to +1s and ones to -1s. This can be accomplished by performing the

operation y = 1 - 2x on each convolutional encoder output symbol.

Adding Noise to the Transmitted Symbols

Adding noise to the transmitted channel symbols produced by the convolutional encoder involves

generating Gaussian random numbers, scaling the numbers according to the desired energy per symbol to

noise density ratio, E
s
/N

 0
, and adding the scaled Gaussian random numbers to the channel symbol values.

For the uncoded channel, E
s
/N

0 
= E

b
/N

 0
, since there is one channel symbol per bit.  However, for the

coded channel, E
s
/N

0 
= E

b
/N

0
 + 10log

10
(k/n).  For example, for rate 1/2 coding, E

 s
/N

0 
= E

b
/N

0
 +

10log
10

(1/2) = E
b
/N

0
 - 3.01 dB.  Similarly, for rate 2/3 coding, E

s
/N

0 
= E

b
/N

0
 + 10log

10
 (2/3) = E

b
/N

0
 -

1.76 dB.

The Gaussian random number generator is the only interesting part of this task. C only provides a uniform

random number generator, rand(). In order to obtain Gaussian random numbers, we take advantage of

relationships between uniform, Rayleigh, and Gaussian distributions:

Given a uniform random variable U, a Rayleigh random variable R can be obtained by:

where  is the variance of the Rayleigh random variable, and given R and a second uniform random

variable V, two Gaussian random variables G and H can be obtained by

G = R cos V and H = R sin V.

In the AWGN channel, the signal is corrupted by additive noise, n(t), which has the power spectrum No/2

watts/Hz. The variance  of this noise is equal to  . If we set the energy per symbol E
s
 equal to 1,

then  . So  .

Quantizing the Received Channel Symbols

An ideal Viterbi decoder would work with infinite precision, or at least with floating-point numbers. In

practical systems, we quantize the received channel symbols with one or a few bits of precision in order to

reduce the complexity of the Viterbi decoder, not to mention the circuits that precede it. If the received

channel symbols are quantized to one-bit precision (< 0V = 1, > 0V = 0), the result is called hard-decision

data. If the received channel symbols are quantized with more than one bit of precision, the result is called

soft-decision data. A Viterbi decoder with soft decision data inputs quantized to three or four bits of

precision can perform about 2 dB better than one working with hard-decision inputs. The usual

quantization precision is three bits. More bits provide little additional improvement.

The selection of the quantizing levels is an important design decision because it can have a significant

effect on the performance of the link. The following is a very brief explanation of one way to set those
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levels. Let's assume our received signal levels in the absence of noise are -1V = 1, +1V = 0. With noise,

our received signal has mean +/- 1 and standard deviation  . Let's use a uniform,

three-bit quantizer having the input/output relationship shown in the figure below, where D is a decision

level that we will calculate shortly:

The decision level, D, can be calculated according to the formula  ,

where E
s
/N

0
 is the energy per symbol to noise density ratio. (The above figure was redrawn from Figure 2

of Advanced Hardware Architecture's ANRS07-0795, "Soft Decision Thresholds and Effects on Viterbi

Performance". See the bibliography  for a link to their web pages.)

Click here to proceed to the description of the Viterbi decoding algorithm itself...

Or click on one of the links below to go to the beginning of that section:

 Introduction

 Description of the Algorithms  (Part 2)

 Simulation Source Code Examples

 Example Simulation Results

 Bibliography

 About Spectrum Applications...

 

Copyright 1999-2002, Spectrum Applications
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