Новини світу мікро- та наноелектроніки

Microchip’s acquisition meshes AI content into FPGA fabric

EDN Network - Tue, 04/16/2024 - 10:51

Field programmable gate arrays (FPGAs), once a territory of highly specialized designs, are steadily gaining prominence in the era of artificial intelligence (AI), and Microchip’s acquisition of Neuronix AI Labs once more asserts this technology premise.

The Chandler, Arizona-based semiconductor outfit, long known for highly strategic acquisitions, has announced to acquire Neuronix, a supplier of neural network sparsity optimization technology that enables a reduction in power, size, and calculations for tasks such as image classification, object detection and semantic segmentation.

The deal aims to bolster the AI/ML processing horsepower on the company’s low- and mid-range FPGAs and make them more robust for edge deployments in computer vision applications. Microchip will combine Neuronix’s neural network sparsity optimization technology with its VectorBlox design flow to boost neural network performance efficiency and GOPS/watt performance in low-power PolarFire FPGAs.

Neuronix AI Labs has been laser-focused on neural network acceleration architectures and algorithms, and Microchip aims to incorporate Neuronix’s AI frameworks in its FPGA design flow. The combination of Neuronix AI intellectual property and Microchip’s existing compilers and software design kits will allow AI/ML algorithms to be implemented on customizable FPGA logic without a need for RTL expertise or intimate knowledge of the underlying FPGA fabric.

Microchip stuck to its FPGA guns even when the Altera-Xilinx duo took over the market before being acquired by Intel and AMD, respectively. Microchip executives maintained all along that FPGAs were a strategic part of its embedded system business. Now, when a plethora of applications continue to populate the edge, Microchip’s vision of embedded systems incorporating low-power FPGA fabrics looks more real than ever.

In short, the acquisition will help Microchip to bolster neural network capabilities and enhance its edge solutions with AI-enabled IPs. It will also enable non-FPGA designers to harness parallel processing capabilities using industry-standard AI frameworks without requiring in-depth knowledge of FPGA design flow.

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Microchip’s acquisition meshes AI content into FPGA fabric appeared first on EDN.

Color sensor/detector without microcontroller up-to 7 colors

Reddit:Electronics - Mon, 04/15/2024 - 20:53
Color sensor/detector without microcontroller up-to 7 colors

This circuit can detect 7 different colors (red, green, blue, yellow, cyan, magenta, white) without any kind of microcontroller just with ldr and rgb led and bunch of ics like 555 timer that provides a clock pulse for 4017 ic so it can light up the rgb led with each pin separated from the other and shift register to save the data from the op amp which is connected to the ldr and bunch of diodes as rom memory and 7 segment display to show the first letter of the color.

submitted by /u/winter__g
[link] [comments]

The Godox V1 camera flash: Well-“rounded” with multiple-identity panache

EDN Network - Mon, 04/15/2024 - 19:33

As regular readers already know, “for parts only” discount-priced eBay postings suggestive of devices that are (for one reason or another) no longer functional, are often fruitful teardown candidates as supplements to products that have died on me personally. So, when I recently saw a no-longer-working Godox V1 camera flash, which sells new for $259.99, listed on eBay for $66, I jumped on the deal. For teardown purposes, yes. But also, for reuse of its still-functional accessories elsewhere. And, as it turns out, to solve a mystery, too.

I’d long wanted to get inside the V1 for a look around (although its formidable price tag had acted as a deterrent), in part because of its robust feature set, which includes:

  • High 76 Ws peak power (5600K color temperature)
  • Fast (~1.5 sec) recycle time, and 480 full-power illuminations per battery charge cycle
  • Supplemental 2 W “modeling lamp” (3300K color temperature)
  • 28-105 mm zoom head (both manual and auto-sync to camera lens focal length setting options)
  • 0°-330° horizontal pan and -7°-120° vertical tilt head
  • Multiple camera shutter sync modes
  • Multiple exposure control modes
  • Auto (camera sync) and manual exposure compensation modes
  • Camera autofocus-assist beam, and
  • Last, but definitely not least, multi-flash master and slave sync options

And partly because this device, like many of the flash units from both Godox and other third-party flash manufacturers such as Neewer, comes in various options that support multiple manufacturers’ cameras. In the case of the V1, these include (differentiated via single-character suffixes in the otherwise identical product name):

  • C: Canon
  • N: Nikon
  • S: Sony
  • F: Fujifilm
  • O: Olympus/Panasonic, and
  • P: Pentax

That all aside, what probably caught your eye first in the earlier “stock” photo was the V1’s atypical round head, versus the more common rectangular configuration found in units such as Godox’s V860III (several examples of which, for various cameras, I also own):

The fundamental rationale for both products is their varying output-light coverage patterns:

Now, about those earlier-mentioned accessories:

The VB26-series battery used by the V1 is also conveniently also used by Godox’s V850III and V860III flash units, as well as the company’s RING72 ring light (optionally, along with the four-AA battery power-source default), and with Adorama’s Flashpoint-branded equivalents for all of these Godox devices, several of which I also own:

Here’s the capper. Shortly after buying this initial “for parts” Godox V1, for which the flash unit itself was the only thing nonfunctional, I came across another heavily discounted V1 that, as it turned out, worked fine but was missing the battery and charging cable. Guess what I did? 😉

About that battery cable…readers with long memories may recall me mentioning the VB26 before. The earlier discussion was in the context of the Olympus/Panasonic version of the V1 (i.e., the V1O), which had come with the original VB26 battery, and which I learned couldn’t be charged from a USB-C power source even though the battery charging dock had a USB-C input; a USB-A to USB-C adapter cable (along with a USB-A power source) was instead necessary. Well, in testing out the battery this time, I absentmindedly plugged it and its companion dock into a handy USB-C power source (and USB-C to USB-C cable) that normally finds use in charging my Google Pixel Buds Pro earbuds…and everything worked fine.

In retrospect, I remembered the earlier failure, and in striving to figure out what was different, I noticed that the battery this time was the more recent VB26A variant. I’d known that both it and its even newer VB26B successor held a bit more charge than the original, but Godox presumably fixed the initial USB-PD (Power Delivery) shortcoming in the evolutionary process, too (the charging circuitry is contained within the battery itself, apparently, with the dock acting solely as a “dummy” wiring translator between the USB-C connector and the battery terminals).

Enough of the prep discussion, let’s get to the tearing down. What we’re looking at today is the V1C, i.e., the Canon variant of the V1 (here’s a user manual):

I’ve long assumed that the various “flavors” of the V1 (and flash units like it) were essentially identical, save for different hot shoe modules and different firmware builds running inside. Although I won’t be dissecting multiple V1 variants today, the fact that they share a common 2ABYN001 FCC certification ID is a “bit” of a tipoff. I hope that this teardown will also shed at least a bit of added light on the accuracy-or-not of this hypothesis.

Open the box, and the goodies inside come into initial view. The cone-shaped white thing (silver on the other side) at top is a reflector, a retailer bundle adder intended for “bounce” uses:

As-usual accompanied by a 0.75″ (19.1 mm) diameter U.S. penny for size comparison purposes are the primary accessories: the standard USB-A to USB-C charging cable below the coin, and to the right, top-to-bottom, the battery, AC-to-DC converter (“wall wart”) and charging dock:

A closeup of the wall wart, complete with specs:

The underside of the battery, this time (as previously noted) the “A” version of the VB26:

And the charging dock, common to all VB26 battery variants:

Lift out the case containing the V1, and several other accessories come into view below it. At bottom right is a mini stand to which you mount the hot shoe when the flash unit isn’t being directly installed on/controlled by the camera (i.e., when the V1 is in wireless sync “slave” mode). And above it is another retailer adder, a goodie bag containing a lens cleaning cloth, a brush (useful when, for example, carefully brushing dust off the image sensor or, for a DSLR, the mirror) and a set of soft gloves.

Flip up the case top flap, and our victim comes into initial view:

Here’s a view of the backside, with the flash head near-vertical. The V1 has dimensions of 76x93x197 mm and weighs 420 g without the battery (530 g with it):

Here’s one (operating mode-dependent) example of what that LCD panel looks like with a turned-on functional V1:

Flip the V1 around for the front view, with the head at the same near-vertical orientation:

A closeup of the label (note, too, the small circular “hole” below the right corner of the label; file it away in your memory for later, when it’ll be important):

And of the translucent front panel, alluding to some of what’s inside:

The circular section at the bottom is for the focus assist beam, and to its left you can faintly see the wireless sensor used to sync the V1 (in either master or slave mode) with other flash units that support Godox’s 2.4 GHz “X” protocol as well as standalone transmitters and receivers:

Now’s as good a time as any, by the way, to show you Neewer’s reminiscent-named Z1:

The V1 and Z1 look the same, are similarly featured, and both use the 2.4 GHz ISM band for wireless sync purposes. Just don’t try to sync them to each other because the protocols differ.

Here’s a straight-on closeup of the V1 flash head:

That circular area at the top, which is toward the ground in normal operation (when the flash head isn’t pointed toward the sky, that is) is the modeling lamp, constantly on when activated versus a traditional “flash”. Here’s what it looks like on, again with an alternative functional V1:

And here are examples of the modeling lamp in use.

The ring around the outside of the flash head lens is metal, by the way, affording an opportunity for easy attachment of various magnet-augmented accessories:

Finally, some side views; first the left (when viewed from the front), containing the compartment “hole” into which the battery is inserted:

And now the right, containing the battery latch, release button and contacts:

The flash head at both extremes of its tilt range:

And a closeup of the QR code sticker on this side of the flash head:

Back to the right-side battery compartment closeup. In the earlier photo, you might have noticed what looked like a protective “flap” to the right of the cavity, and above the battery-release button. If so, you’d be right:

The round female connector at the top is not for headphones. It’s a 2.5 mm sync cord jack, for mating to a camera or transmitter as an alternative to a hot shoe or wireless connection. Below it is a USB-C connector used to connect to a computer for updating the flash unit firmware. On a hunch, I mated this supposedly “dead” V1 to my Mac and was surprised to find that the flash unit was recognized. I could even update its firmware, in fact, and all without a battery installed:

Even though this V1’s all-important illumination subsystem is DOA, it’s apparently not all-dead!

Last, but not least, let’s have a look at the hot shoe:

As previously mentioned, my working theory is that this (along with the software running inside the device) is the key differentiator between the V1 variants. It’s (perhaps unsurprisingly) also the most common thing that breaks on V1s:

So, I’ll be holding onto this part of the device long-term, both for just-in-case repair purposes and for another experimental project that I’ll tell you about later…

Did you notice the four screws holding the hot shoe assembly in place? Let’s see if their removal enables us to get inside:

Here’s the removed hot shoe assembly, both in the “loose” and “latched” positions (controlled by rotation of that grey button you see in the photos):

And here’s what’s inside:

Next step, remove the four “corner” screws whose heads were obscured by white paste in previous photos:

The outer bracket piece now lifts away:

Leaving an assemblage that, for already mentioned reasons, I’m not going to further disassemble, in order to preserve it for potential future use:

Unfortunately, although this initial disassembly step gave me a teaser peak at the insides, I wasn’t yet seemingly able to proceed further from this end:

So, I returned my attention to the flash head (the other end), around which I’d remembered seeing a set of screws that held the plastic cover and metal ring in place:

Underneath it was a Fresnel lens.

From Wikipedia:

A Fresnel lens…is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections…The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet.

With the Fresnel lens removed, the Zenon tube assembly comes into clear view:

If you look at the bottom, you’ll see a two-rail “track” on which it moves forwards and backwards to implement, in conjunction with the fixed-position Fresnel lens, the zoom function.

I was able to unclip the brackets holding the fronts of both halves of the head assembly together, but further progress eluded me:

So, I next tried peeling away the round rubberized pieces covering both ends of the “tilt” hinge:

A-ha! Screws!

Now for the other side…

You know what comes next…

And now, one half (the lower half, to be precise) of the flash head enclosure lifts right off:

I initially thought that this mysterious red paste-covered doodad might be a piezoelectric speaker, for generating “beep” tones and the like, and its location coincides with the “hole” below the label that I showed you earlier, but…again, hold that thought:

We now get our first clear views of the flash head insides. Check out, for example, that sizeable heatsink for the modeling lamp LED!

Four screws hold the assembly in place within the other half-enclosure. Let’s get rid of these:

Liftoff!

Here’s our first glimpse of one side of this particular PCB. Look at that massive inductor coil!

Disconnect a couple of ribbon cables:

Tilt the assembly to the side:

Next, let’s remove the modeling lamp LED-plus-heatsink assemblage:

The two are sturdily glued together, so I won’t proceed further in trying to pry them apart:

Now let’s remove the PCB from the white plastic piece it’s normally attached to:

Let’s look first at the now-revealed PCB backside. First off, unsurprising mind you given the high current flow involved but still…look at those thick traces:

See those two switches? The motor position-controlled Zenon tube bumps up against them at the far end of its zoom travel range, seemingly disabling further motion in that direction (why there aren’t similar switch contacts at the rails’ other ends isn’t clear to me, however):

Finally, note the red-color, white paste-capped device in the upper right corner. Its “TB” PCB marking, along with the wire running from it to the Zenon tube, suggests to me that it may be a thermal breaker intended to temporarily disable the flash unit if it gets too hot. Ideas, readers?

Let’s now flip the PCB back over to the side we glimpsed earlier:

Time for a brief divergence into flash unit operation basics. In the “recharge” interval between flash activations, a sizeable capacitor (which we haven’t yet seen) gets “filled” by the battery electron flow. At least some of that stored capacitive charge then gets “dumped” into the Zenon tube. But here’s the trick…the Zenon tube’s illumination time and intensity vary depending on the camera’s desired exposure characteristics. So where does any “extra” current go, if not needed by the Zenon tube?

Initially, the excess electrons were instead shunted off to something called the quench tube, a wasteful approach that both limited battery life and unnecessarily lengthened recharge time. Nowadays, either gate turn-off (GTO) thyristors or insulated-gate bipolar transistors (IGBTs) instead find use in cutting off the current flow from the capacitor, saving remaining charge for the next Zenon tube activation. I’m admittedly no power electronics design expert, so I can’t confidently say which approach is in use here. To assist the more knowledgeable-than-me readers among you (numerous, I know), note that the two devices above the coil are S6008D half-wave, unidirectional, gate-controlled rectifiers; the IC above them has the following marks:

EIC
SN
5M

Again, I say: further insights, readers?

Before moving on, let’s take a closer look at that zoom motor:

And now, let’s figure out how to get inside that hinge (where, I suspect, we’ll find that aforementioned sizeable capacitor). Looking closely at the ends I’d previously exposed, I noticed two more screws on each, but removing them didn’t seemingly get me any further along:

In the process of unscrewing them, however, I realized that I hadn’t yet showed you the pan range supported by the head:

And in the process of doing that, I noticed more screws underneath the pan hinge:

That’s more like it (although I’m now inside the main flash body, not yet the hinge above it)!

Let’s start with the now-detached back panel:

The LCD behind it is visible through the clear section, obviously, but don’t forget about the ribbon cable-fed multi-button-and-switch array below it:

That same panel piece from below, with another look at the ribbon cable:

And finally, that same panel piece from above:

Let’s return to that earlier inside view and get those four screws off:

The multi-button/switch assembly now lifts away straightaway:

And that black piece then pops right off, too:

Here’s a cross-section view of the circular multi-switch structure:

And with that, let’s return to the multi-sided structure we saw earlier, inside the main body:

Next are a series of sequential wiring disconnection shots; there are multiple ribbon cable harnesses, as you’ll see, some of them terminating in the tilt hinge above and some passing through the tilt hinge to the flash head above it:

 

With the front half of the main body shell now free and clear, let’s look at what’s inside:

That thing toward the bottom center, with a blue/black wire combo coming out of it, is the aforementioned focus assist beam. But what about the one in the upper left, with red and black wires coming out of it? Here’s a top view of the front-half piece; note the “hole” at bottom right at the corresponding external location:

Remember the mystery device inside the flash head, with a reminiscent red-and-black wire harness and external “hole”, that I initially thought was a speaker and asked you to remember?

I’d originally realized it wasn’t a speaker when I took my functional V1, activated its “beep” function and discerned that the sound wasn’t coming from there. But when I saw the second similar device-and-hole, I grabbed my functional (and fully assembled) V1 again and realized that when (and only when) the flash head was pointed horizontal and forward, the two “holes” lined up. My working theory is that one of the devices is an IR transmitter with the other an IR receiver, and that this alignment is how the flash figures out when the user has both the pan and tilt settings at their “normal” default positions. For what reason, I can’t yet precisely sort out; there’s no indication I can find in the user manual that the V1 operates any differently when pan and/or tilt are otherwise oriented. But conceptually, I could imagine that the flash’s integrated controller and/or connected camera might be interested in knowing whether the unit is being used for conventional or “bounce” purposes from an operating mode, exposure setting and/or other standpoint. Once again, readers: ideas?

At this point, by the way (and speaking of flash heads), the top half of this part of the case spontaneously disconnected from the pan-and-tilt hinge assembly:

Returning to the main body, let’s see what’s inside. Back, complete with the LCD (the on/off switch is in the lower right corner):

Right side:

Left side (note the battery latch, contacts, etc. initially highlighted before):

Front, with an initial “reveal” of the primary “power” PCB (although there’s plenty of analog stuff in the earlier flash head-located PCB too!):

Top:

And bottom, revealing a secondary “digital” PCB that we’ll discuss further shortly:

There’s one more PCB of note, actually, which isn’t visible until after you remove two screws and disconnect the LCD assembly, then flip it around:

Here’s where the main system controller can be found, therefore why I refer to it as the primary “digital” PCB. It’s the APM32F072VBT6 (PDF), from a Chinese company called Geehy Semiconductor. The entire product family, as you’ll see from the PDF, contains dozens of members, based both on the Arm Cortex-M0+ and Cortex-M3. This particular SoC proliferation (at the top of the table labeled “APM32 MCU-ARM Cortex -M0+” in the PDF, for your ease of locating it) integrates a Cortex-M0+ running at 48 MHz along with 128 Kbytes of flash memory and 16 Kbytes of RAM. I can’t find a discrete flash memory chip for code storage on the PCB; the IC in the lower right corner is a LMV339 quad-channel comparator, and pretty much everything else here are connectors and passives. Oh, and the speaker’s to the left of the comparator 😉.

Here’s a side view, showing the USB-C and 2.5 mm sync connectors:

And flipping the assembly back over, as well as flipping the LCD upside-down, you’ll find that this side of the PCB is effectively blank, save for the earlier-noted power switch:

Next, continuing with the “digital” theme, let’s look more closely at the bottom-mounted PCB:

This one requires a bit of background explanation.

I’ve already told you that the primary 2.4 GHz transceiver system for multi-unit sync purposes is upfront behind the red translucent panel, and you’ll see it again shortly. But there’s another 2.4 GHz transceiver system in the V1, this one Bluetooth-based and designed to enable flash unit configuration and control from a wirelessly tethered smartphone or tablet in conjunction with a Godox (or Adorama) app. That’s why, unsurprisingly now that you know the background, the two dominant ICs on this side of the PCB are Texas Instruments’ CC2500 low-power 2.4 GHz RF transceiver and, to its right, TI’s CC2592 front-end RF IC. Flip the PCB over:

and again, unsurprisingly, you’ll find the embedded Bluetooth antenna.

Finally, let’s look more closely at what I referred to earlier as the primary “power” PCB:

Many of the ICs here are similar to the ones we saw in the earlier flash head-located PCB, such as two more of those mysterious ones labeled “EIC” but now with slightly different second- and third-line marks:

EIC
SK
5B

And on the other side:

is more analog and power circuitry, including a sizeable capacitor at the bottom (albeit not as sizeable as I suspect we’ll see shortly!).

Speaking of which, let’s close by looking closely at that tilt hinge assembly. Here it is from the front:

Top:

and back:

All are fairly unmemorable. The left side is not much less boring:

At least until I tilt it slightly, revealing a green tint indicative of a PCB inside:

The right side is quite a bit busier, with wiring harnesses formerly running up to the flash head:

Even more titillating when I again tilt it, as well as moving wiring to the sides:

And speaking of wiring (and titillating relocation of same), here’s the bottom:

Cautiously, both because I don’t know exactly what’s on the other side and, if I’m right and it’s an enormous capacitor, whether it’s fully discharged, I proceed:

Enormous capacitor, indeed!

Refilling this sizeable “electron gas tank”, folks, explains the 1.5 second recycle time between flash activations, and makes the 480 activations per battery recharge all the more remarkable:

And with that, slightly more than 4,000 words in, I’m done! Not quite “in a flash”, but I still hope you found this teardown as interesting as I did. Sound off with your thoughts in the comments! And in closing, enjoy these two insides-revealing repair videos that I found during my research:

Brian Dipert is the Editor-in-Chief of the Edge AI and Vision Alliance, and a Senior Analyst at BDTI and Editor-in-Chief of InsideDSP, the company’s online newsletter.

 Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post The Godox V1 camera flash: Well-“rounded” with multiple-identity panache appeared first on EDN.

A sneak peek at HBM cold war between Samsung and SK hynix

EDN Network - Mon, 04/15/2024 - 19:17

As high-bandwidth memory (HBM) moves from HBM3 to its extended version HBM3e, a fierce competition kicks off between Samsung and SK hynix. Micron, the third largest memory maker, has also tagged along to claim stakes in this memory nirvana that is strategically critical in artificial intelligence (AI) designs.

HBM is a high-value, high-performance memory that vertically interconnects multiple DRAM chips to dramatically increase data processing speed compared to conventional DRAM products. HBM3e is the fifth generation of HBM following HBM, HBM2, HBM2E and HBM3 memory devices.

HBM helps package numerous AI processors and memories in a multi-connected fashion to build a successful AI system that can process a huge amount of data quickly. “HBM memory is very complicated, and the value added is very high,” Jensen Huang, Nvidia co-founder and CEO, said at a media briefing during the GPU Technology Conference (GTC) held in March 2024 at San Jose, California. “We are spending a lot of money on HBM.”

Take Nvidia’s A100 and H100 processors, which commanded 80% of the entire AI processor market in 2023; SK hynix is the sole supplier of HBM3 chips for these GPUs. SK hynix currently dominates the market with a first-mover advantage. It launched the first HBM chip in partnership with AMD in 2014 and the first HBM2 chip in 2015.

Figure 1 SK hynix currently dominates the HBM market with nearly 90% of the market share.

Last month, SK hynix made waves by announcing to start the mass production of the industry’s first HBM3e chip. So, is the HBM market and its intrinsic pairing with AI processors a case of winner-takes-all? Not really. Enter Samsung with a 12-layer HBM3e chip.

Samsung’s HBM surprise

Samsung’s crosstown memory rival SK hynix has been considered the unrivalled HBM champion since it unveiled the first HBM memory chip in 2014. It’s also known as the sole HBM supplier of AI kingpin Nvidia while Samsung has been widely reported to be lagging in HBM3e sample submission and validation.

Then came Nvidia’s four-day annual conference, GTC 2024, where the GPU supplier unveiled its H200 and B100 processors for AI applications. Samsung, known for its quiet determination, once more outpaced its rivals by displaying 12-layer HBM3e chips with 36 GB capacity and 1.28 TB/s bandwidth.

Figure 2 Samsung startled the market by announcing 12-layer HBM3e devices compared to 8-layer HBM3e chips from Micron and SK hynix.

Samsung’s HBM3e chips are currently going through a verification process at Nvidia, and CEO Jensen Huang’s note “Jensen Approved” next to Samsung’s 12-layer HBM3e device on display at GTC 2024 hints that the validation process is a done deal. South Korean media outlet Alpha Biz has reported that Samsung will begin supplying Nvidia with its 12-layer HBM3e chips as early as September 2024.

These HBM3e chips stack 12 DRAMs, each carrying 24-GB capacity, leading to a peak memory bandwidth of 1.28 TB/s, 50% higher than 8-layer HBM3e devices. Samsung also claims its 12-layer HBM3e device maintains the same height as the 8-layer HBM3e while offering 50% more capacity.

It’s important to note that SK hynix began supplying 8-layer HBM3e devices to Nvidia in March 2024 while its 12-layer devices, though displayed at GTC 2024, are reportedly encountering process issues. Likewise, Micron, the world’s third largest manufacturer of memory chips, following Samsung and SK hynix, announced the production of 8-layer HBM3e chips in February 2024.

Micron’s window of opportunity

Micron, seeing the popularity of HBM devices in AI applications, is also catching up with its Korean rivals. Market research firm TrendForce, which valued the HBM market approximately 8.4% of the overall DRAM industry in 2023, projects that this percentage could expand to 20.1% by the end of 2024.

Micron’s first HBM3e product stacks 8 DRAM layers, offering 24 GB capacity and 1.2 TB/s bandwidth. The Boise, Idaho-based memory supplier calls its HBM3e chip “HBM3 Gen2” and claims it consumes 30% less power than rival offerings.

Figure 3 Micron’s HBM3e chip has reportedly been qualified for pairing with Nvidia’s H200 Tensor Core GPU.

Besides technical merits like lower power consumption, market dynamics are helping the U.S. memory chip supplier to catch up with its Korean rivals Samsung and SK hynix. As noted by Anshel Sag, an analyst at Moor Insights & Strategy, SK hynix already having sold out its 2024 inventory could position rivals like Micron as a reliable second source.

It’s worth mentioning that Micron has already qualified as a primary HBM3e supplier for Nvidia’s H200 processors. The shipments of Micron’s 8-layer HBM3e chips are set begin in the second quarter of 2024. And like SK hynix, Micron claims to have sold all its HBM3e inventory for 2024.

HBM a market to watch

The HBM market will continue to remain competitive in 2024 and beyond. While HBM3e is positioning as the new mainstream memory device, both Samsung and SK hynix aim to mass produce HBM4 devices in 2026.

SK hynix is employing hybrid bonding technology to stack 16 layers of DRAMs and achive 48 GB capacity; compared to HBM3e chips, it’s expected to boost bandwidth by 40% and lower power consumption by 70%.

At the International Solid-State Circuits Conference (ISSCC 2024) held in San Francisco on February 18-21, where SK hynix showcased its 16-layer HBM devices, Samsung also demonstrated its HBM4 device boasting a bandwidth of 2 TB/s, a whopping 66% increase from HBM3e. The device also doubled the number of I/Os.

HBM is no longer the unsung hero of the AI revolution, and all eyes are on the uptake of this remarkable memory technology.

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-inread'); });
googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post A sneak peek at HBM cold war between Samsung and SK hynix appeared first on EDN.

South Korea’s RFHIC invests in epiwafer supplier SweGaN

Semiconductor today - Mon, 04/15/2024 - 19:06
SweGaN AB of Linköping, Sweden has entered a strategic partnership with South Korea-based RFHIC Corp, which designs and manufactures GaN RF & microwave high-power semiconductor components and hybrid modules for applications in wireless communications, defense & aerospace, and RF Energy (industrial, scientific & medical). The new agreement encompasses an undisclosed equity investment from RFHIC. The two companies will focus on joint R&D and new product development...

Infineon receives ‘GaN Strategic Partner of the Year’ award from Chicony

Semiconductor today - Mon, 04/15/2024 - 18:56
Chicony Power Technology Co Ltd of New Taipei, Taiwan has announced the winners of its Annual Partner Awards, honoring Infineon Technologies AG of Munich, Germany as its 2023 ‘GaN Strategic Partner of the Year’...

Light + Building 2024: Fulminant innovation show provides a stage for sustainability and efficiency in buildings

ELE Times - Mon, 04/15/2024 - 13:58

The modern building is intelligent, connected and as a result saves energy. In combination with alternative energy sources and efficient lighting solutions, emissions in the building sector can be drastically reduced. This makes a significant contribution to achieving climate targets. 2,169 exhibitors presented the latest developments in building technology and trends in innovative lighting design at Light + Building in Frankfurt am Main from 3 to 8 March 2024. Over 151,000 visitors travelled to the world’s leading trade fair for lighting and building-services technology.

“The atmosphere at the exhibitors’ booths, in the halls and throughout the exhibition grounds was simply fantastic. We are extremely pleased that so many exhibitors and visitors, as well as our long-standing partners, have continued the success story of the world’s leading trade fair for lighting and building-services technology in 2024,” summarises Wolfgang Marzin, President and Chief Executive Officer of Messe Frankfurt. He adds: “With the switch to renewable energy sources, greater efficiency and sustainability in buildings, the industry has key goals on its agenda. That’s why they used the platform intensively, especially in the first few days, to present and discover innovations and drive forward key topics. After all, if we want to achieve the climate protection goals, the building sector is an essential milestone. It is unfortunate that the rail and air transport strikes have already affected Messe Frankfurt’s third leading international event since the beginning of the year.”

Buildings of tomorrow and inspiring lighting solutions

Key topics are the electrification and digitalisation of homes and buildings in order to reduce emissions and reuse raw materials. At Light + Building, the industry presented the digital and electrotechnical infrastructure for this and, on this basis, showcased solutions for dynamic power control, energy storage systems and applications for connected security. One growing area is the range of e-mobility and charging infrastructure as well as innovations and products for decentralised energy supply systems and components.

Light plays an important role in the architecture of tomorrow. At Light + Building 2024, 65 per cent of exhibitors belonged to this sector. They presented high-quality lighting solutions for indoor and outdoor areas as well as dynamic room concepts. Modern LED installations ensure contemporary efficiency and either blend harmoniously into the architecture or emphasise the design elements. Lighting is to provide maximum visual comfort in all living and working environments. Thanks to the materials used, Acoustic Lighting combines a pleasant lighting atmosphere with sound-absorbing functions. Sustainability plays an essential role in both the materials used and the manufacturing processes. Many manufacturers design luminaires in a way that the raw materials used can be recycled at the end of their useful life.

Light + Building 2024 in figures

The high-quality, extensive and international portfolio of lighting and building-services technology impressed the visitors. 95 per cent of them were extremely satisfied with what was on display and stated that they had achieved 93 per cent of their trade fair attendance targets. The most came to the innovation meeting point from Germany, China, Italy, the Netherlands, France, Switzerland, Belgium, Austria, the UK, Spain and Poland. They came from a total of 146 countries – including, for example, India, the USA, the United Arab Emirates, Australia, Brazil and Singapore. The degree of internationality was thus 51 per cent. The level of internationality among the 2,169 exhibitors was also high at 76 per cent.

Meeting place for the social media community

The social media community also found its home at Light + Building. On 3 and 4 March, the leading content creators in the lighting and building-services technology sector gathered for the Power Creator Days. In addition to live podcasts, expert talks and case studies, visitors had the chance to pedal for a good cause and work together towards a high energy target. A total of 1,510 minutes were cycled on the six fitness bikes. The sponsors will convert the result into a cash donation for the Leberecht Foundation, which Messe Frankfurt will double. The exact amount will be announced on social media further to Light + Building.

The next Light + Building will take place from 8 to 13 March 2026 in Frankfurt am Main.

Voices of the industry 02_191008_Alexander-Neuhaeuser_RO7A4153_Foto_ZVEHAlexander Neuhäuser, General Manager ZVEH (Central Association of the German Electrical and Information Technology Trades)

Alexander Neuhäuser, General Manager ZVEH, Central Association of the German Electrical and Information Technology Trades, says that “Light + Building demonstrates how sector coupling can succeed through the necessary connectivity. The electrical trades integrate photovoltaics, storage, electromobility and heat pumps. They show how the energy industry requirements for controllable consumption devices (SteuVE) can be met and thus take account of the current transformation process. The good atmosphere at this year’s Light + Building 2024 was also noticeable at the joint stand of the electrical trades, which was very busy on all days of the event. The traditional partners’ evening was also a complete success, bringing together the partners of the electrical trades and the industry leaders. We were particularly pleased that so many young people once again took the opportunity to visit the E-House and the workshop street and gain an impression of what is feasible with smart and intelligently connected building automation.”

Wolfgang Weber, CEO, ZVEI, Electro and Digital Industry Association, is of the opinion that, “In the context of climate goals and the economic situation of urgently creating more affordable living space in Germany, technologies are increasingly coming into focus. The exhibiting companies at Light + Building have impressively demonstrated how easily well-designed climate protection can even lead to greater economic efficiency in the operation of houses, buildings and entire neighbourhoods.

Wolfgang-Weber-Portraet-Quelle-ZVEI-Alexander-Grueber-scaledWolfgang Weber, CEO, ZVEI (Electro and Digital Industry Association)

This requires the right solutions, especially from the electrical and digital industry, such as heat pumps, controllable lighting, charging points and an energy management system. This is relevant – not just in Germany and Europe, but worldwide. Light + Building is the right place to present innovative, climate-friendly technologies and solutions and to engage in dialogue with trade visitors from Germany and abroad.”

The post Light + Building 2024: Fulminant innovation show provides a stage for sustainability and efficiency in buildings appeared first on ELE Times.

Q-Pixel debuts highest-resolution active-matrix color display

Semiconductor today - Mon, 04/15/2024 - 12:59
Micro-LED display startup Q-Pixel Inc of Los Angeles, CA, USA has achieved what it claims is the highest-resolution active-matrix color display: 3K x 1.5K resolution in a screen of ~1.1cm x 0.6cm...

Riber’s annual revenue grows 41% to €39.3m, driven by systems revenue almost doubling

Semiconductor today - Mon, 04/15/2024 - 12:58
For full-year 2023, molecular beam epitaxy (MBE) system maker Riber S.A. of Bezons, France has reported revenue of €39.3m, up 41% on 2022’s €27.8m...

Rare Soviet frequency standard clock (Ч7-3)

Reddit:Electronics - Sat, 04/13/2024 - 20:33
Rare Soviet frequency standard clock (Ч7-3)

Managed to save this from the dump yesterday. The thing apperas to be extremely rare as there is no info on it even in Russian internet segment. No ICs inside, only transistors.

submitted by /u/AltCtrlGraphene
[link] [comments]

Weekly discussion, complaint, and rant thread

Reddit:Electronics - Sat, 04/13/2024 - 18:00

Open to anything, including discussions, complaints, and rants.

Sub rules do not apply, so don't bother reporting incivility, off-topic, or spam.

Reddit-wide rules do apply.

To see the newest posts, sort the comments by "new" (instead of "best" or "top").

submitted by /u/AutoModerator
[link] [comments]

8-bit MCUs tout 15-W USB power delivery

EDN Network - Sat, 04/13/2024 - 00:07

Microchip’s AVR DU 8-bit MCUs integrate a USB 2.0 full-speed interface that supports power delivery up to 15 W, enabling USB-C charging at up to 3 A at 5 V. According to the manufacturer, this capability, not commonly found in other USB microcontrollers in this class, allows embedded designers to implement USB functionality across a wide range of systems.

In addition to higher power delivery than previous devices, AVR DU microcontrollers also feature improved code protection. To defend against malicious attacks, the devices employ Microchip’s Program and Debug Interface Disable (PDID) function. When enabled, the PDID function locks out access to the programming/debugging interface and blocks unauthorized attempts to read, modify, or erase firmware.

To enable secure firmware updates, the MCUs provide read-while-write flash memory in combination with a secure bootloader. This allows designers to use the USB interface for in-field updates without disrupting product operation.

The AVR DU family of MCUs is suitable for a range of embedded applications, from fitness wearables and home appliances to agricultural and industrial applications. A virtual demonstration of the MCU’s USB bridge is available here.

AVR DU series product page

Microchip Technology 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post 8-bit MCUs tout 15-W USB power delivery appeared first on EDN.

Renesas expands general-purpose MCU choices

EDN Network - Sat, 04/13/2024 - 00:06

RA0 microcontrollers from Renesas are low-cost devices that offer low power consumption and a feature set optimized for cost-sensitive applications. The MCUs can be used in such applications as consumer electronics, system control for small appliances, building automation, and industrial control systems.

Based on an Arm Cortex-M23 core, the 32-bit MCUs consume 84.3 µA/MHz in active mode, dropping to just 0.82 mA in sleep mode. A software standby mode cuts current consumption even further, allowing the device to sip just 0.2 µA. These features, coupled with a high-speed on-chip oscillator for fast wakeup, make the MCUs particularly well-suited for battery-operated products.

The first devices in the RA0 series, the RA0E1 group, operate from a supply voltage of 1.6 V to 5.5 V. This means there is no need for a level shifter/regulator in 5-V systems. An on-chip oscillator improves baud rate accuracy and maintains ±1.0% precision over a temperature range of -40°C to +105°C.

Other features of the RA0E1 group of MCUs include: 

  • Memory: Up to 64 kbytes of code flash and 12 kbytes of SRAM
  • Analog Peripherals: 12-bit ADC, temperature sensor, internal reference voltage
  • Communications Peripherals: 3 UARTs, 1 Async UART, 3 Simplified SPIs, 1 IIC, 3 Simplified IICs
  • Safety: SRAM parity check, invalid memory access detection, frequency detection, A/D test, immutable storage, CRC calculator, register write protection
  • Security: Unique ID, TRNG, flash read protection

RA0E1 microcontrollers are shipping now. Package options include 20-pin LSSOP, 32-pin LQFP, and QFN with 16, 24, or 32 leads.

RA0E1 product page

Renesas Electronics 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Renesas expands general-purpose MCU choices appeared first on EDN.

Hi-rel GaN load switch ships off-the-shelf

EDN Network - Sat, 04/13/2024 - 00:06

The first entry in Teledyne’s 650-V power module family, the TDGM650LS60 integrates a 650-V, 60-A GaN transistor and isolated driver in a single package. The module, which is now available off-the-shelf, acts as a load switch or solid-state switch. Fast switching time and the absence of moving parts make the TDGM650LS60 useful for high-reliability applications in the space, avionics, and military sectors.

The TDGM650LS60 tolerates up to 100 krads of total ionizing does (TID) radiation and operates over a temperature range of -55°C to +125°C. It’s enhancement-mode GaN transistor has a minimum breakdown voltage of 650 V and a stable on-resistance of 25 mΩ. Coupled with the driver’s 5-kV isolation, the TDGM650LS60 ensures robust and reliable operation in challenging environments.

Occupying a 21.5×21.5-mm footprint, the TDGM650LS60 module has solder-down castellation for surface-mount style mounting. A preliminary datasheet can be accessed by using the link to the product page below.

TDGM650LS60 product page

Teledyne e2v HiRel Electronics    

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Hi-rel GaN load switch ships off-the-shelf appeared first on EDN.

Bluetooth module taps Cortex-M33 processor

EDN Network - Sat, 04/13/2024 - 00:05

A Bluetooth LE 5.4 module, the HCM511S from Quectel, leverages the power of an Arm Cortex-M33 core, along with 352 or 512 kbytes of flash memory. The module, which also provides 32 kbytes of RAM, brings efficient performance to compact connected devices such as digital keys, portable medical devices, and battery-operated motion sensors.

According to Quectel, the Bluetooth module’s transmit power of +6 dBm achieves long-distance transmission, allowing low-power devices to connect cost effectively. Optional support for Bluetooth mesh nodes increases network scalability and allows greater device density over a mesh topology. The HCM511S also offers up to 18 GPIOs, which can be multiplexed for various interfaces, including ADC, USART, I2C, I2S, PDM, SPI, and PWM.

The MCU Bluetooth module comes in a 16.6×11.2×2.1-mm LCC package and weighs just 0.57 g. It operates over a temperature range of -40°C to +85°C. In addition to being certified by the Bluetooth Special Interest Group, the HCM511S is also certified for use in Europe, America, Canada, China, Australia, and New Zealand.

Engineering samples of the HCM511S MCU Bluetooth module are available now.

HCM511S product page

Quectel Wireless Solutions  

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Bluetooth module taps Cortex-M33 processor appeared first on EDN.

FPGA integrates hard RISC-V cores

EDN Network - Sat, 04/13/2024 - 00:04

Enabling high compute performance at the edge, the Titanium Ti375 FPGA from Efinix packs a quad-core hardened RISC-V block and 370,000 logic elements. It employs the company’s high-density, low-power Quantum compute fabric wrapped with an I/O interface.

The 32-bit hardened RISC-V block (RISCV321 with M, A, C, F, and D extensions and six pipeline stages) offers a Linux-capable MMU, FPU, and custom instruction capability. Paired with an Efinix Sapphire SoC, the Ti375 FPGA helps designers turn a tiny chip into an accelerated embedded compute system.

The Ti375 is manufactured on a 16-nm process and comes in a fine-pitch BGA package with a choice of 529, 676, 900, or 1156 balls. Its full-duplex serializer/deserializer transceiver operates at data rates from 1.25 Gbps to 16 Gbps and supports multiple protocols, including PCIe 4.0, Ethernet SGMII, and Ethernet 10GBase-KR. The FPGA also features a LPDDR4 DRAM controller and MIPI D-PHY.

Samples of the Titanium Ti375 FPGA are shipping now to early access customers.

Ti375 product page

Efinix

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post FPGA integrates hard RISC-V cores appeared first on EDN.

CSA Catapult issues annual report for 2022–23

Semiconductor today - Fri, 04/12/2024 - 15:43
Compound Semiconductor Applications (CSA) Catapult has issued its annual report for the financial year 2022–23, highlighting progress in its two focus areas — Net Zero and Future Telecoms — and describing how it has helped industry to bring next-generation compound semiconductor technologies to market...

Coherent secures $15m in CHIPS Act funding via CLAWS Hub

Semiconductor today - Fri, 04/12/2024 - 14:09
Materials, networking and laser technology firm Coherent Corp of Saxonburg, PA, USA has secured $15m in funding from the Creating Helpful Incentives to Produce Semiconductors (CHIPS) and Science Act of 2022 that provided the US Department of Defense (DoD) with $2bn to strengthen and revitalize the US semiconductor supply chain...

Microchip Acquires ADAS and Digital Cockpit Connectivity Pioneer VSI Co. Ltd. to Extend Automotive Networking Market Leadership

ELE Times - Fri, 04/12/2024 - 10:17

Acquisition adds ASA Motion Link technology to Microchip’s broad Ethernet and PCIe automotive networking portfolio to enable next-generation software-defined vehicles

Microchip Technology Inc. has announced the completed acquisition of Seoul, Korea-based VSI Co. Ltd., an industry pioneer in providing high-speed, asymmetric, camera, sensor and display connectivity technologies and products based on the Automotive SerDes Alliance (ASA) open standard for in-vehicle networking (IVN). The terms of the transaction are not disclosed.

The market size of automotive radar, camera and LiDAR modules is expected to grow by greater than two times between 2022 to 2028 to $27B in revenue, according to Yole Group[1]. This anticipated growth is driven by the increased adoption of Advanced Driver Assistance Systems (ADAS), in-cabin monitoring, safety and convenience features (e.g., 360-degree surround view, e-mirrors) and multi-screen digital cockpits for next-generation software-defined vehicles (SDV). These applications will require more highly asymmetric raw data and video links and higher bandwidths, making current, proprietary serializer/deserializer (SerDes) based solutions no longer adequate, both commercially and technically. In response to these developments, the Automotive SerDes Alliance (ASA) was formed in 2019 and released the first open-standard ASA Motion Link (ASA-ML)  specifications.

“This acquisition brings VSI’s knowledgeable team, their market traction and ASA Motion Link technologies and products to Microchip’s expansive automotive networking portfolio to better serve the ADAS megatrend we are focused on,” said Mitch Obolsky, senior vice president of Microchip’s automotive products, networking, and data centre business units. “As the industry converges around three primary IVN pillars – Ethernet, PCIe and ASA Motion Link, camera and display connectivity is one of the fastest growing and largest IVN markets. With VSI, Microchip can now offer products that span all three pillars and also provide automotive security, microcontrollers, motor control, touch and power management solutions to our customers to enable their next-generation software-defined vehicle architectures.”

Today, ASA has over 145 members, including Microchip who is a promoter member. With 11 automotive manufacturers including BMW, GM, Ford, Stellantis and Hyundai-Kia Motors Corporation, the Alliance also includes an ecosystem ranging from Tier 1 suppliers, semiconductor and imager vendors, to test and compliance houses. In addition to being an open standard, ASA-ML brings link layer security and scalability to support 2 Gbps to 16 Gbps line rates. Furthermore, the upcoming specification update will enable ASA-ML to support Ethernet-based architectures.

“Microchip Technology is an established and trusted market leader in automotive networking known for their automotive quality and robust supply chain, and our team is excited to join them to address the growing ADAS and digital cockpit connectivity market,” said Steve Kang, CEO of VSI Co. Ltd. “VSI is a leader in the development of ASA-ML products and was the first to introduce products to the market. Our standards-compliant chipsets are being evaluated by car manufacturers worldwide. We recently collaborated with BMW in a proof of concept to showcase ASA-ML and our product readiness. This acquisition brings together two organizations with a shared commitment to advancing technology through innovation. We look forward to successfully deploying our solutions in production vehicles for years to come.”

In March 2024, BMW Group announced at the Automotive Ethernet Congress in Munich they would shift to using standardized ASA-ML for the upcoming start of productions. BMW has always been at the forefront of in-vehicle networking innovation and strongly believes in leveraging standardized technologies in their vehicle architectures and now also their video architecture.

[1] Sources: LiDAR for Automotive – Radar for Automotive – Status of the Camera Industry – Yole Intelligence, 2023.

The post Microchip Acquires ADAS and Digital Cockpit Connectivity Pioneer VSI Co. Ltd. to Extend Automotive Networking Market Leadership appeared first on ELE Times.

Pages

Subscribe to Кафедра Електронної Інженерії aggregator - Новини світу мікро- та наноелектроніки