Feed aggregator

MCUs target motor control and power conversion

EDN Network - Thu, 01/23/2025 - 19:34

Infineon’s first PSOC Control MCUs, based on Arm Cortex-M33 processor, enable secured motor control and power conversion. Supported by Modus Toolbox design tools and software, the entry and mainline devices offer varied performance, features, and memory options.

PSOC Control MCUs—C3M for motor control and C3P for power conversion—can be used in appliances, industrial drives, robots, light EVs, solar systems, and HVAC equipment. Their Cortex-M33 processor runs at up to 180 MHz with a DSP and FPU, while a CORDIC math coprocessor accelerates control loop calculations.

Entry-line MCUs (C3M2, C3P2) feature high-resolution, high-precision ADCs and timers, while mainline MCUs (C3M5, C3P5) add high-resolution PWMs for faster real-time response. The devices are PSA Certified Level 2/EPC2 and include Class B and SIL 2 safety libraries. A crypto accelerator, Arm TrustZone, and secure key storage enable IP protection and firmware updates.

The PSOC Control C3 entry and main lineup comprises 34 devices, all available now.

PSOC Control C3 product page

Infineon Technologies 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post MCUs target motor control and power conversion appeared first on EDN.

Keysight elevates chiplet design environment

EDN Network - Thu, 01/23/2025 - 19:34

Chiplet PHY Designer 2025 from Keysight offers simulation capabilities for UCIe 2.0 and support for the Open Compute Project Bunch of Wires (BoW) standard. Tailored to AI and data center applications, this digital chiplet design and die-to-die (D2D) platform enables pre-silicon level validation, streamlining the path to tapeout.

The Chiplet PHY Designer aids chiplet development by ensuring interoperability with UCIe 2.0 and BoW standards, enabling seamless integration within advanced packaging ecosystems. It accelerates time-to-market by automating simulation and compliance testing setup, including Voltage Transfer Function (VTF) analysis, simplifying design workflows.

Enhancing design accuracy, the toolset provides insight into signal integrity, bit error rate (BER), and crosstalk analysis, minimizing the risk of costly silicon re-spins. It also optimizes clocking designs by supporting advanced schemes like quarter-rate data rate (QDR), ensuring precise synchronization for high-speed interconnects.

To read about what’s new in Chiplet PHY Designer 2025, click here.

Chiplet PHY Designer product page 

Keysight Technologies 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Keysight elevates chiplet design environment appeared first on EDN.

GaN die power custom MMICs

EDN Network - Thu, 01/23/2025 - 19:34

Guerrilla RF’s GRF0020D and GRF0030D GaN-on-SiC HEMT power amplifiers deliver up to 50 W of saturated power. Available as bare die, these discrete transistors are intended for wireless infrastructure, military, aerospace, and industrial heating applications, supporting integration into custom MMICs.

Each device operates from either 50-V or 28-V supply rails, covering multiple octaves of operational bandwidth for continuous wave, linear, and pulsed modulation. When using a 50-V rail, the GRF0030D delivers 50 W (PSAT) from DC to 6 GHz, with gain ranging from 13.5 dB to 23.7 dB. At 28 V, it provides up to 27.5 W of saturated output power.

The GRF0020D offers up to 30 W at 50 V and 19 W at 28 V. This lower-power HEMT supports frequencies up to 7 GHz and provides gain between 13.8 dB and 24.3 dB.

The GRF0020D and GRF0030D are 100% DC production tested to ensure known good die (KGD) compliance. They are available for order, with samples ready for distribution. Prices start at $30 each for quantities of 100 units.

GRF0020D product page 

GRF0030D product page 

Guerrilla RF 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post GaN die power custom MMICs appeared first on EDN.

Scope option enables wideband modulated load pull

EDN Network - Thu, 01/23/2025 - 19:34

R&S offers a load pull test setup with wideband modulated signals using the RTP oscilloscope for non-linear device characterization. Compared to conventional vector network analyzers, this setup enables wideband modulation characterization of RF frontends across varying impedances. It allows precise validation of key performance indicators, such as error vector magnitude and adjacent channel leakage ratio, to support the development of RF components for next-generation wireless technologies.

Designed to verify power amplifier performance when connected to an antenna with dispersive impedance, the setup is based on the RTP084 oscilloscope with the wideband modulated load-pull option RTP-K98, paired with the SMW200A vector signal generator. The oscilloscope’s internal architecture ensures precise phase and time synchronization for forward and reverse wave measurements. Meanwhile, the dual-path vector signal generator provides accurate timing and phase stability between the input and tuning signal for load pull operation.

The RTP-K98 software processes the oscilloscope’s measured data, performs the necessary calculations to achieve the target impedance, and controls the signal generator. It is well-suited for verifying the performance of RF frontends, typically used across wider frequency ranges and multiple transmission bands, such as 5G or Wi-Fi.

Option RTP-K98 is available now. For more information on load pull testing, click here.

RTP product page

Rohde & Schwarz  

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Scope option enables wideband modulated load pull appeared first on EDN.

TCXO enhances synchronization for 800G networks

EDN Network - Thu, 01/23/2025 - 19:34

The SiT5977 Super-TCXO from SiTime is a single-chip timing device that achieves 3X better synchronization than its predecessor and enables 800G network connectivity. Part of the Elite RF family, this differential-ended TCXO optimizes AI compute efficiency in large data centers.

With a dedicated low-phase-noise MEMS resonator driving its integrated PLL, the SiT5977 simplifies AI system architectures by replacing multiple timing components. This ultra-stable, low-jitter TCXO provides a 156.25-MHz output with 80-fs phase jitter and LVDS outputs, supporting 800G and higher links. Integrated digital control adds system-level programmability.

The SiT5977 offers ±0.1 to ±0.25 ppm frequency stability, ensuring precise timing for high-speed networks and AI systems. Designed for demanding environments, it features a ±1-ppb/°C frequency slope (dF/dT) for resilience against airflow and thermal shock. Its digitally controlled tuning allows fine frequency adjustments with a ±400-ppm pull range and 0.05-ppt (5e-14) resolution via an I2C/SPI interface, facilitating embedded control loops for real-time compensation.

Housed in a compact 5.0×3.5-mm package, the SiT5977 Super-TCXO is now in production, with samples available.

SiT5977 product page 

SiTime

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post TCXO enhances synchronization for 800G networks appeared first on EDN.

Calories, power dissipation, and environmental chambers

EDN Network - Thu, 01/23/2025 - 16:01

I was having a bottle of iced tea one day when I noticed something. Please see this excerpt from the bottle’s label referring to a 2,000 calories per day of personal intake (Figure 1).

I confirmed that caloric number independently to learn that it’s considered an average, but still an essentially correct daily caloric intake number.

Figure 1 Bottle label excerpt referring to a 2000 calories per day standard diet.

If we look up the word “calorie”, we find that one calorie equals 4.184 Joules (Figure 2).

Figure 2 A quick word search reveals that a single calory is the equivalent of 4.184 Joules.

If then we consume 2000 calories per day, we find the following in Figure 3.

Figure 3 The human body power usage based upon the 2,000 calories per day reference for a standard diet.

Two thousand calories per day equals 8368 joules per day which then comes to 0.096852 joules per second which is just under 97 mW. We’ll call that 100 mW just for convenience of thought. We are dealing with approximations, of course.

If all of one’s caloric intake is ultimately dispersed as body heat, that 100 mW of body heat could plausibly be imparted to whatever delicate unit under test (UUT) one happens to be working on while working diligently inside an environmental test chamber.

I once saw such an environmental test chamber in which there was a bank of 100-W lamps mounted “over there”. Those lamps were kept constantly lit and running except that if one more person were to enter the room, one lamp would then be extinguished. This was supposed to help hold the thermal environment of the UUT as invariant as possible.

If we say the following:

  • That each light bulb was providing 100 W over a spherical area of 4*π*R² where R is the radial distance from the light bulb
  • That the UUT has 1 square foot (1 ft2)of presented area receiving that bulb’s thermal radiation
  • That the bulk of the 100 mW of a human body was also impinging on that UUT

We can then seek that value of R for which the 100 W  of one bulb was down by a factor of 1000 to yield the equivalent human presentation of 100 mW to that UUT.

Noting that 100 W divided by 100 mW equals 1,000, we seek that value of R at which the area of the posited sphere around the bulb comes to 1,000 ft2.

Where 4*π*R² = 1,000, we find that R is nominally 8.92 ft.

For all of these crude approximations, y’know what?? That is indeed just about how far away those light bulbs were positioned with respect to the UUT at hand in that chamber.

John Dunn is an electronics consultant, and a graduate of The Polytechnic Institute of Brooklyn (BSEE) and of New York University (MSEE).

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-inread'); });
googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Calories, power dissipation, and environmental chambers appeared first on EDN.

Robot System Products (RSP) Opens Manufacturing Facility in Chennai, India

ELE Times - Thu, 01/23/2025 - 14:18

Robot System Products (RSP), a global leader in high-performance industrial robot accessories, has officially opened its first production facility outside of Sweden, located in Chennai, India, through its subsidiary company, Scandinavian Robot Systems India Private Limited.

RSP’s Indian subsidiary began operations in November 2023 in Tamil Nadu, one of India’s primary automotive hubs. Since then, the company has been supplying its industry-leading range of robot accessories to customers across India. In 2024, RSP experienced significant growth, especially within the automotive and automotive ancillary (Tier-1) sectors in India. To further enhance customer service, the company also established a branch office in Pune, strengthening its presence in western India.

The new facility in Chennai will focus on manufacturing key products or modules such as automatic tool changers, swivels, tool parking stands, and cable & hose management solutions. RSP is leveraging the established supplier network in Tamil Nadu and Karnataka to ensure high-quality production.

According to the International Federation of Robotics (IFR), India was the fastest-growing industrial robot market in 2023, with annual installations increasing by 50%, reaching 8,500 units. This surge in demand has positioned India as the 10th largest robotics market globally. “We are confident in our decision to establish operations in India, and the rapid market growth reinforces that India will deliver on its potential,” said Eddie Eriksson, President and CEO of Robot System Products AB.

RSP’s products are designed to enhance manufacturing flexibility and reliability across all major robot brands. As a leading innovator in the industrial automation space, RSP delivers cutting-edge solutions that improve robot performance and versatility. Among its key products, the automatic tool changers stand out for their efficiency, enabling robots to seamlessly switch between various tools—such as grippers, welders, and drills—without downtime, optimizing productivity and throughput.

Arvind Vasu, Managing Director of RSP’s India subsidiary, commented, “Indian industries are poised to boost productivity through robot-based automation, particularly in automotive electric vehicles, electronics, and other manufacturing sectors. With India’s ambitious ‘Make in India’ initiative, RSP is well-positioned to offer local industries reliable, high-quality, and flexible solutions to help them automate and achieve their goals.”

The post Robot System Products (RSP) Opens Manufacturing Facility in Chennai, India appeared first on ELE Times.

Pages

Subscribe to Кафедра Електронної Інженерії aggregator