Українською
  In English
Feed aggregator
💢 Сесія професорсько-викладацького складу 2025
Сесія професорсько-викладацького складу відбудеться 29 серпня о 10 годині дня. Запрошуємо переглянути відеотрансляцію.
Коли:
🗓 29.08.2025
🕙 10:00
📍 Зала засідань Вченої ради (офлайн для членів Вченої ради)
Added support for typeC-typeC cables to a Chinese stm32 board with missing resistors on CC pins
| | submitted by /u/_SomeRandomDude__ [link] [comments] |
STMicroelectronics Appoints MD India
Anand Kumar is the Managing Director of STMicroelectronics (ST), India, and has held this position since June 2025. He heads the Global IP and Library Design team, located across France and India, within ST’s Global Technology R&D organization. Kumar’s team takes IPs from concept to production maturity and brings variants over time, across the full portfolio of ST’s proprietary, differentiated technologies and technology platforms.

Anand Kumar began his career in 1999 as an Analog Designer in ST’s Central R&D organization. With over 25 years of experience as a designer, design team lead, and global lead of IP design, he has deep expertise in designing Analog and Mixed-Signal IPs and leading high-performing IP and Library Design teams delivering a wide range of IPs. These include memories, IOs, standard cells, clock-generation IPs, data converters, sensors, power-management IPs, fuses, and other analog and digital IPs across all ST technology nodes.
Kumar holds more than 20 patents and has presented at multiple top-tier international scientific and technical semiconductor conferences.
Anand Kumar was born in Narwana (Haryana state), India, in 1976, and holds a degree in Electronics and Communication Engineering from NSUT (Netaji Subhas University of Technology, formerly Delhi Institute of Technology), Delhi.
The post STMicroelectronics Appoints MD India appeared first on ELE Times.
Xscape and Tower unveil first optically pumped on-chip multi-wavelength laser platform for AI data-center fabrics
Water Damage may have killed my light
| The bottom 3 leds are not working There was water in the casing [link] [comments] |
Top 10 Federated Learning Applications and Use Cases
Nowadays, individuals own an increasing number of devices—such as fitness trackers and smartphones that continuously generate valuable data. At the same time, organizations like banks, hospitals, and enterprises produce vast amounts of sensitive information. However, due to strict privacy regulations, this data cannot be openly shared for centralized processing. In such scenarios, federated learning offers a transformative solution: it enables machine learning models to be trained directly on-device or within institutional boundaries, without transferring raw data. This approach preserves privacy while unlocking powerful, collaborative AI capabilities. As a result, data from diverse sources both personal and institutional can be securely leveraged to extract insights and drive smarter decisions. Below are 10 compelling real-world applications where federated learning is making a significant impact.
- Telecommunications
The federated model enables telecommunication firms to study patterns of their clients, enhance network performance, and make accurate tele-service projections for their distributed systems. This fosters efficient network systems while safeguarding customer information. In the same context, mobile operators stand to enhance calling services from user data sourced from spatially dispersed systems.
- Autonomous Vehicles
Self-driving cars and connected vehicles utilize federated learning to collaborate vehicles enhance navigation, obstacle identification, and safety measures. This eliminates the need to consolidate personal driving information. Drivers of self-driven automobiles and fleet operators utilize federated learning to enhance safety, navigation, and object detection with the aid of local sensor data consisting of cameras, LIDAR, and object detection.
- Finance
Banks and fintech companies use federated learning for detecting fraud, credit scoring, and modeling credit risk. One example is the training of a multi-bank fraud detection model to recognise suspicious transactions while safeguarding user information.
- Smart Devices & IoT
Smartphones, as well as other wearable devices, use federated learning to enhance voice recognition, keyboard prediction, and health tracking functions. An instance is the Gboard keyboard from Google, which leverages federated learning to upgrade its autocorrect as well as next-word prediction features grounded on users’ typing patterns.
- Cybersecurity
Federated learning is employed in factories for process optimization, predictive maintenance, and even defect detection. Federated learning enables multiple organizations to collaboratively train intrusion detection models using local network logs. This approach enhances threat detection accuracy while preserving sensitive data and complying with privacy regulations.
- Manufacturing
Factories use federated learning for predictive maintenance, defect detection, and process optimization. For instance, multiple production lines can train a model to predict equipment failure using local sensor data, reducing downtime.
- Energy & Utilities
Energy companies and power grids use advanced techniques to forecast demand and anticipate failures in the system by learning from distributed sensor data across substations and smart meters. Use Case includes a national utility company uses federated learning to predict peak electricity usage across cities, helping balance load distribution without accessing individual household data.
- Retail & E-commerce
Retailers customize product recommendations cross-sell and up-sell suggestions and basket-level cross-product purchase analytics across different store locations without sharing any stepwise item-level purchase data of shoppers. A classic use case is a global fashion retailer who wants to suggest outfit combinations based on current trends of different geographies. The retailer can now use the federated approach, enabling training of the model across all the stores in the regions while protecting shopper and purchase data.
- Content Platforms
With less risk to user privacy, platforms can better personalize user feeds and automatically moderate content by learning locally from user interactions. Use Case: A video streaming app enhances its recommendation system by locally training on user watch histories stored on devices, ensuring tailored recommendations while refraining from uploading any viewing data to the cloud.
- Aviation
Carriers and aircraft manufacturers develop models from flight execution and servicing records over different fleets in an attempt to improve safety and cut downtime, with the added benefit of keeping proprietary data private. A use case is offered by the federated model training from different airlines that enables the prediction of an engine’s wear and tear based on flight conditions, which aids in the scheduling of proactive maintenance without the need to share sensitive operational data.
Conclusion:
Federated learning protects privacy while facilitating cooperative model training across dispersed data sources. It lowers the risks associated with data transfers, conforms with data protection laws, and enables businesses to leverage insights without jeopardizing user privacy.
The post Top 10 Federated Learning Applications and Use Cases appeared first on ELE Times.
Infineon Upgrades Its Control MCUs for Post-Quantum Cryptography Transition
OpenLight raises $34m in Series A funding round to scale integrated photonics for AI data centers
Top 10 Federated Learning Companies in India
Federated learning is transforming AI’s potential in India by allowing models to be trained without infringing on the privacy of decentralized data. Federated learning is of critical importance in healthcare, finance, and consumer technology due to the rising needs of industries for AI that is secure, compliant with regulations, and privacy-preserving. Due to India having a flourishing technology ecosystem as well as a strong pool of AI talents, India is emerging as a leader in this technology. This article will discuss the leading 10 companies in India that focus on federated learning.
- TCS Research
TCS Research as the innovation wing of Tata Consultancy Services, TCS Research collaborates with federated learning for enterprise AI. Their initiatives cover healthcare, banking, and smart city projects, centering on the safe training of models over distributed data silos.
- Wipro HOLMES
Wipro’s AI platform, uses federated learning to provide intelligent automation and edge AI. Its application in telecommunications, manufacturing, and IT services aids in the development of AI models without eroding data privacy.
- Infosys Nia
Infosys Nia An all-in-one AI platform, Infosys Nia also offers federated learning for decentralized data modeling, which is especially beneficial in retail, and finance, where data sensitivity is high and compliance is critical.
- SigTuple
With its headquarters in Bengaluru, SigTuple is a health tech company which employs federated learning to streamline the analysis of medical images and diagnostics, while still maintaining patient data privacy. Their AI solutions not only save time but also improve the decision-making processes of pathologists and radiologists.
- Qure.ai
With over a decade of specialization in AI-driven radiology, Qure.ai is a clear leader. They are notable examples of the application of federated learning in radiology, not only for advancing diagnostic precision but also for safeguarding critical medical information.
- Vaidik AI
Vaidik AI marks a new chapter in the federated learning narrative of India. It launched an extensive selection of AI services, including the fine-tuning of LLMs and multilingual AI. Its multidisciplinary expertise in data annotation and the privacy-first approach to AI model development is well known. It provides healthcare, finance, and education sectors with economical and scalable solutions.
- ActionLabs AI
ActionLabs AI is located in Bengaluru and works with federated learning, edge AI, and generative model creation. Though healthcare and fintech startups appearing to be ActionLabs’ primary areas of focus, the company’s small size allows it to efficiently cater to a wider range of companies.
- Accenture India
Accenture adapts federated learning to its Responsible AI framework, assisting clients spanning the energy sector to public services in securely training models on decentralized data.
- Fractal Analytics
Fractal Analytics Fractal applies federated learning to generate consumer insights for retail and CPG. Their solutions enable brands to analyze consumer behavior without pooling sensitive data.
- Intel India
Intel India, with its offices in Bengaluru and Hyderabad, is pivotal in advancing federated learning as it refines secure hardware platforms such as Trusted Execution Environments (TEEs) and furthers AI research through Intel Labs. It also champions privacy-preserving AI in healthcare, smart cities, and edge computing.
Conclusion:
The federated learning ecosystem in India is evolving rapidly with the presence of global technology leaders such as Intel and the innovative local startups such as ActionLabs AI, Vaidik AI, and SigTuple. These firms not only expand the frontiers of privacy-preserving AI but also position the federated learning ecosystem to thrive on data collaboration devoid of security risks. With growing demand across healthcare, finance, and edge computing, federated learning is becoming a cornerstone of ethical AI development in India.
The post Top 10 Federated Learning Companies in India appeared first on ELE Times.
Cadence Accelerates Development of Billion-Gate AI Designs with Innovative Power Analysis Technology Built on NVIDIA
New Cadence Palladium Dynamic Power Analysis App enables designers of AI/ML chips and systems to create more energy-efficient designs and accelerate time to market
Cadence announced a significant leap forward in the power analysis of pre-silicon designs through its close collaboration with NVIDIA. Leveraging the advanced capabilities of the Cadence Palladium Z3 Enterprise Emulation Platform, utilizing the new Cadence Dynamic Power Analysis (DPA) App, Cadence and NVIDIA have achieved what was previously considered impossible: hardware accelerated dynamic power analysis of billion-gate AI designs, spanning billions of cycles within a few hours with up to 97 percent accuracy. This milestone enables semiconductor and systems developers targeting AI, machine learning (ML) and GPU-accelerated applications to design more energy-efficient systems and accelerate their time to market.
The massive complexity and computational requirements of today’s most advanced semiconductors and systems present a challenge for designers, who have until now been unable to accurately predict their power consumption under realistic conditions. Conventional power analysis tools cannot scale beyond a few hundred thousand cycles without requiring impractical timelines. In close collaboration with NVIDIA, Cadence has overcome these challenges through hardware-assisted power acceleration and parallel processing innovations, enabling previously unattainable precision across billions of cycles in early-stage designs.
“Cadence and NVIDIA are building on our long history of introducing transformative technologies developed through deep collaboration,” said Dhiraj Goswami, corporate vice president and general manager at Cadence. “This project redefined boundaries, processing billions of cycles in as few as two to three hours. This empowers customers to confidently meet aggressive performance and power targets and accelerate their time to silicon.”
“As the era of agentic AI and next-generation AI infrastructure rapidly evolves, engineers need sophisticated tools to design more energy-efficient solutions,” said Narendra Konda, vice president, Hardware Engineering at NVIDIA. “By combining NVIDIA’s accelerated computing expertise with Cadence’s EDA leadership, we’re advancing hardware-accelerated power profiling to enable more precise efficiency in accelerated computing platforms.”
The Palladium Z3 Platform uses the DPA App to accurately estimate power consumption under real-world workloads, allowing functionality, power usage and performance to be verified before tapeout, when the design can still be optimized. Especially useful in AI, ML and GPU-accelerated applications, early power modeling increases energy efficiency while avoiding delays from over- or under-designed semiconductors. Palladium DPA is integrated into the Cadence analysis and implementation solution to allow designers to address power estimation, reduction and signoff throughout the entire design process, resulting in the most efficient silicon and system designs possible.
The post Cadence Accelerates Development of Billion-Gate AI Designs with Innovative Power Analysis Technology Built on NVIDIA appeared first on ELE Times.



