Microelectronics world news

SmartViser and Anritsu unite to optimise testing for Energy Labelling regulation for smartphones and tablets with Strategic Partnership

ELE Times - Fri, 02/09/2024 - 08:00

Anritsu Corporation a global provider of innovative test and measurement solutions now enable advanced AI (Artificial Intelligence) capabilities for solving difficult problems in wireless communications systems using DeepSig’s proven AI machine learning (ML) technology.  Radio Spectrum is a valuable asset that needs to be managed, shared, and utilized optimally in wireless networks.  New radio frequencies required to enable 6G Use Cases are becoming increasingly scarce, and there is increased attention towards the development of novel spectrum-sharing techniques.  Traditional RF sensing techniques face limitations in dynamically changing wireless environments, and more advanced monitoring and signal characterization is required.

Anritsu has addressed this challenge by partnering with Deepsig to deliver a groundbreaking solution that integrates the capabilities of the Anritsu MS2090A Field Master Pro Spectrum Analyser with DeepSig’s wireless signal detection and classification software, which is based on its patented Artificial Intelligence (AI) deep learning algorithms.  Employing a deep learning, data-driven approach allows Anritsu to rapidly incorporate new radio signal models into their capabilities using DeepSig’s ML training tools. RF signals of interest from diverse new sources like drones and IOT devices can be learned quickly and accurately in days, rather than months, to meet fast-changing customer requirements. These advanced technologies also form the foundation for AI-native RF sensing for 6G. This integrated solution will empower customers to enhance network performance, optimize spectrum utilization, and achieve real-time adaptation to changing RF conditions.

The post SmartViser and Anritsu unite to optimise testing for Energy Labelling regulation for smartphones and tablets with Strategic Partnership appeared first on ELE Times.

New U-blox Modules Support Simultaneous Positioning and Communications

AAC - Fri, 02/09/2024 - 02:00
Designers can leverage the newest U-blox modules to simplify cellular and IoT design.

The 10 Most Common EMC Challenges in a PCB Design

AAC - Thu, 02/08/2024 - 20:00
Improve your PCB designs and avoid costly respins due to EMC test failures by learning some basic design techniques and applying modern EMC analysis software.

Parsing PWM (DAC) performance: Part 2—Rail-to-rail outputs

EDN Network - Thu, 02/08/2024 - 17:30

Editor’s Note: This a four-part series of DIs proposing improvements in the performance of a “traditional” PWM—one whose output is a duty cycle-variable rectangular pulse which requires filtering by a low-pass analog filter to produce a DAC. This second part addresses the inability of “rail-to-rail” op amps’ output swing to encompass supply rail voltages.

Part 1 can be found here.

Recently, there has been a spate of design ideas (DIs) published that deal with microprocessor (µP)-generated pulse width modulators driving low-pass filters to produce DACs. Approaches have been introduced which address ripple attenuation, settling time minimization, and limitations in accuracy. This is the second in a series of DIs proposing improvements in PWM-based DAC performance. Each of the series’ part’s recommendations are, and will be, implementable independently of the others. This DI addresses the inability of “rail-to-rail” op amps’ output swings to encompass their supply rail voltages. Recognizing that an op amp is needed to buffer a filter from a DC load to prevent load-induced errors, and that these devices are useful in implementing more effective analog filters, there is a legitimate interest in mitigating or eliminating this imperfection.

Wow the engineering world with your unique design: Design Ideas Submission Guide

It don’t mean a thing if it ain’t got that swing (well, sort of…)

The common mode input voltages of many rail-to-rail op amps may be 100 mV above their positive and below their negative supply rails, but none have an output common mode voltage range which includes those rails. The OPA376, 2376, and 4376 rail-rail family with its excellent input offset voltage and bias current ratings are no different. The SC70-5, SOT23-5, and SO-8 package versions reach within 40 mV of the rails with a 10 kΩ load from -40°C to 125°C, and within 50 mV with a 2 kΩ load. There are various means of dealing with this limitation.

In the spirit of “Doctor, it hurts when I do this”, “Then don’t do that!”: software could simply prevent the setting of duty cycles which would drive the op amp too near a supply rail. This is rather unsatisfactory if the code which generates the duty cycle values expects that the values of zero and full scale (FS) will be executable. So, suppose an op amp can swing to within X mV of both its positive rail (VDD) and ground; instead of programing the PWM counter with a value of DC, program it with DC’ = DC · (1 – α) + α · FS/2, where α = X mV · 2 / VDD.

If that calculation imposes an unacceptable software burden, there is a related analog approach. In Figure 1, set R = r · α / (1 – α). The full range of DC values is now restricted to a range that the op amp output can replicate.

Figure 1 A purely analog means of avoiding op amp input voltages so close to the supply rails that the output cannot replicate them.

If the resistors have a 0.1% tolerance, the maximum offset error is a little greater than 2-15· VDD. The gain error is larger though: a little less than 2-10 · VDD. With adequate calculation resolution, the method of scaling the duty cycle count in software leads to smaller errors than the purely analog one.

In some applications, it is imperative that a DAC can swing to ground. In others, it must also be able to reach the µP’s positive rail, VDD. To accomplish this, voltage(s) beyond (a) supply rail(s) must be generated. But in no case can the supply voltages’ range exceed that recommended for the op amp, which is 5.5 V for the OPAx376 family. This necessitates different solutions for the common VDD supply values of 1.8, 2.5, 3.3 and 5.0 V. We will now follow with a series of schematics that contain solutions for each of these voltages…

The circuitry for the op amp positive rail (OP+) can be ignored in favor of VDD if the DAC needn’t swing to VDD. Texas Instruments’ LM7705 provides a complete and elegant means of generating a voltage that is only slightly more negative than ground, thereby allowing the op amp output to reach 0 V (Figure 2). This charge pump accepts a supply voltage of from 3 to 5.25 V and provides a regulated output of -230 mV at up to 20 mA. The LM7705 offer features beyond those of a simple charge pump inverter (which requires an external oscillator) in that:

  1. An inverter sets the negative rail supply voltage to be the negative of the positive supply voltage. At VDD = 3 V and above, 3 V – (-3 V) exceeds the OPAx376’s family’s maximum differential supply voltage VOpRange of 5.5 V. The LM7705 provides just enough negative voltage and no more than is needed.
  2. The LM7705 has a smaller footprint and incorporates an oscillator and a regulated DC output into a single IC.

Figure 2 This simple and inexpensive inverting charge pump provides a regulated -0.23 V for a rail-to-rail op amp’s negative supply so that the op amp output can swing to, and even below, ground.

But an application might also require swinging to the positive rail. The need to avoid supply voltage ranges exceeding 5.5 V for the OPAx376 leads to different solutions for different values of VDD (always assumed to be within +/- 5% of nominal value). The simplest solution is for the case of VDD equal to 1.8 V (Figure 3).

Figure 3 Solution for staying within the supply operating range for the OPAx376 where VDD = 1.8 V.

The LM2664 is a voltage inverter generating -VDD from + VDD. With the addition of D1, D2, C3 and C4, a voltage of 2 · VDD – 2 · Vd is generated where Vd is the voltage drop across the diodes. OA+ is enough above VDD to allow the op amp output to include the positive rail. The difference between OA+ and OA- is safely within supply operating range (VOpRange) for the OPAx376. If your VDD is between 1.8 and 5.5 V and is less than 1/3 of the VOpRange of your op amp, this simple and cheap circuit could be all you need. But if not…

As shown in Figure 4, the same circuit is the basis for operation from a 2.5V supply, but accommodations must be made to meet VOpRange for the OPAx376. This is accomplished by adding D3 and D4 to incur voltage drops.

Figure 4 Solution for staying within the supply operating range for the OPAx376 where VDD = 2.5 V.

Combinations of +/-5% variations in VDD, tolerances in diode voltage drops, and variations over temperature and load of the above circuit’s output voltages warn against applying the strategy of adding more diodes in series for the case where VDD increases to 3.3V (Figure 5).

Figure 5 Solution for staying within the supply operating range for the OPAx376 where VDD = 3.3 V.

Here the LM2664 performs the same function as it did for a VDD of 1.8 and 2.5 V. But it powers a cheap op amp IC which functions as a positive and a negative voltage regulator. The R6 / R7 divider ensures that the LM358BI operates within its common mode input range. (Its VOpRange is greater than 30 V!) OA+ and OA- voltages are approximately 100 mV beyond VDD = 3.3 V +/-5% and ground. Q1 and Q2 are placed in feedback loops to reduce the regulator output impedance. Since the op amp rails should be decoupled with ground-referenced .1 µF capacitors, this reduced impedance increases the loop’s high frequency break point. The result could be unstable were it not for the combination of C5 and R3 and that of C6 and R1. These pairs filter out the high phase-shift, high frequency feedback taken from the emitters and ensure that only mid frequencies down to DC are being regulated, thus establishing stability. In this circuit, the resistors are 1% tolerance parts.

As shown in Figure 6, the circuit for a 5 V VDD is similar to that for 3.3 V, but simpler. Here the higher Pump+ voltage means that there are no worries about input common mode operation, and we can dispense with R6 and R7. The passive components that make up the regulators are now identical.

Figure 6 Solution for staying within the supply operating range for the OPAx376 where VDD = 5 V.

Encompassing supply rail voltages

In this DI, several different approaches have been presented for producing DACs whose voltage swings encompass supply rails, or at least mitigate the problems associated with those that don’t. Hopefully, one or more are suitable for your application.

Christopher Paul has worked in various engineering positions in the communications industry for over 40 years.

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Parsing PWM (DAC) performance: Part 2—Rail-to-rail outputs appeared first on EDN.

Transphorm showcasing GaN power conversion range at APEC

Semiconductor today - Thu, 02/08/2024 - 15:04
Transphorm Inc of Goleta, near Santa Barbara, CA, USA says that it is showcasing its broad spectrum (low to high power) gallium nitride (GaN) power conversion solutions in booth 1813 at the Applied Power Electronics Conference (APEC 2024) in Long Beach, CA, USA (25–29 February), at which it is a Silver Partner...

Feit Electric begins patent enforcement action against Ledvance

Semiconductor today - Thu, 02/08/2024 - 12:33
California-based global lighting and smart home brand Feit Electronic Company Inc has commenced patent infringement action against Ledvance LLC in the United States District Court for the Eastern District of Kentucky. Feit Electric says that, despite being warned, Ledvance imported and then sold white LED filament light bulbs marketed under the brand name Sylvania...

Rohde & Schwarz Unveils Wi-Fi 7 Test Solutions for Seamless 5G Integration

ELE Times - Thu, 02/08/2024 - 12:12

Step into the future of wireless technology with Rohde & Schwarz’s latest innovation in Wi-Fi 7 test solutions, aimed at enhancing device development for ultra-high-definition video streaming, VR, AR, and beyond.

As the telecommunications landscape embraces the era of 5G technology, the integration of non-3GPP networks like public, home, and enterprise WLAN hotspots with the 5G core is of paramount importance. This integration paves the way for the future of smartphones and wireless devices, heavily reliant on advanced WLAN technologies such as Wi-Fi 7, promising greater power and efficiency but posing challenges of complexity.
Addressing these emerging needs, Rohde & Schwarz has unveiled its cutting-edge Wi-Fi 7 test solutions. These solutions are tailored to tackle the growing test challenges associated with next-generation WLAN technologies and their coexistence with existing LTE and 5G standards. Equipped with Wi-Fi 7 testing capabilities, the multi-technology multi-channel signalling tester enables R&D engineers to streamline the testing process for wireless devices across both cellular and non-cellular standards, thus optimizing the development process.

Key features of these solutions include new Wi-Fi 7 capabilities, testing of RF TX/RX characteristics of WLAN devices under real conditions, support for Multi-Link-Operation (MLO), flexibility across multiple radio technologies for Wi-Fi 7-specific tests, and the ability to test WLAN offloading and Voice over WLAN for seamless service continuity and high-quality voice experiences over WLAN networks.

Wi-Fi 7, also known as IEEE 802.11be, marks a significant leap forward in WLAN technology, aimed at supporting extremely high data throughput for applications like ultra-high-definition video streaming, virtual reality, and augmented reality. With enhancements such as increased channel bandwidth (up to 320 MHz), up to 16 spatial streams, and advanced 4096 QAM modulation, Wi-Fi 7 sets the stage for the future of wireless connectivity.

Rohde & Schwarz’s Wi-Fi 7 test solutions are meticulously designed to meet these advanced specifications, underscoring the company’s commitment to supporting the evolution of WLAN technologies. Optimized for efficient RF measurements in non-signaling mode for device production, the tester supports a wide range of cellular and non-cellular technologies, including Wi-Fi 6E, Wi-Fi 7, and 5G NR FR1, with bandwidth capabilities up to 500 MHz, positioning itself as a forward-looking solution for both R&D and production needs.

The post Rohde & Schwarz Unveils Wi-Fi 7 Test Solutions for Seamless 5G Integration appeared first on ELE Times.

UK’s £11m REWIRE Innovation and Knowledge Centre to develop wide/ultrawide-bandgap high-voltage power electronics

Semiconductor today - Thu, 02/08/2024 - 11:39
With funding of £11m from the UK Engineering and Physical Sciences Research Council (EPSRC) and Innovate UK (both part of UK Research and Innovation), the new Innovation and Knowledge Centre (IKC) REWIRE is being led by professor Martin Kuball and his team at the University of Bristol, with support from partners at the Universities of Cambridge and Warwick, as well as industry partners including Ampaire, BMW, Bosch, Cambridge GaN Devices (CGD), Element-Six Technologies, General Electric, Hitachi Energy, IQE, Oxford Instruments, Siemens, ST Microelectronics and Toshiba...

Educational MCU Board Featuring Nordic SoCs Teaches Electronic Design

AAC - Thu, 02/08/2024 - 02:00
Using an industrial SoC, this educational device provides an easy entry into the wireless world.

Worksport using Infineon’s GaN power transistors in converters of its portable power stations

Semiconductor today - Wed, 02/07/2024 - 20:12
Infineon Technologies AG of Munich, Germany has announced a collaboration in which its GS-065-060-5-B-A gallium nitride (GaN) power transistors will be used by Worksport Ltd of West Seneca, NY, USA in the converters for its portable power stations in order to increase their efficiency and power density. Enabled by Infineon’s GaN transistors, the power converters will be lighter and smaller in size with reduced system costs. In addition, Infineon will support Worksport in the optimization of circuits and layout design to further reduce size and increase power density...

Understanding the Inner Workings of Vector Network Analyzers

AAC - Wed, 02/07/2024 - 20:00
In this article, we explore how the signal source and receivers of a VNA enable its function.

NUBURU evaluating strategic alternatives

Semiconductor today - Wed, 02/07/2024 - 18:16
NUBURU Inc of Centennial, CO, USA — which was founded in 2015 and develops and manufactures high-power industrial blue lasers — has engaged Northland Capital Markets as its financial advisor in connection with its evaluation of strategic alternatives. With assistance from Northland and its other advisors, the NUBURU will assess a full range of strategic alternatives, including a sale, merger, divestiture, recapitalization, going private transaction, additional financing, and other significant transactions...

Neon lamp blunder

EDN Network - Wed, 02/07/2024 - 16:26

There was this test system that comprised a huge row of equipment racks into which various items of test equipment would be mounted. Those items were a digital multimeter, an oscilloscope, several signal generators and so forth. Each section of the rack assembly had a neon lamp mounted at its base which was supposed to indicate that 400 Hz AC line voltage was turned on or turned off for the equipment mounted in that rack section.

Planned essentially as follows in Figure 1, the idea did not work.

Figure 1 Neon lamp indicator plan where line voltage was always present and applied to the equipment installed within each section via a power relay where singular SPST contact set operated that section’s neon lamp.

Line voltage was always present but would be applied to installed equipment within each section via a power relay of which one SPST contact set was to operate that section’s neon lamp. The problem was that each section’s neon lamp would always stay lit, no matter the state of the relay and the state of equipment power application.

No neon lamp would ever go dark.

There was much ado about this with all kinds of accusations and posturing, finger pointing, scoldings, searching for a fall guy and so forth but the problem itself was never solved. What had been overlooked is shown as follows in Figure 2.

Figure 2 The culprit was the stray capacitance from the wiring harness that each SPST contact was wired through that kept each neon lamp visibly lit.

Each SPST contact was wired through a harness which imposed a stray capacitance across the contacts of the intended switch. When the SPST was set to be open, that stray capacitance provided a low enough impedance for AC current to flow anyway and that current level was sufficient to keep the neon lamp visibly lit.

Brilliant, huh?

John Dunn is an electronics consultant, and a graduate of The Polytechnic Institute of Brooklyn (BSEE) and of New York University (MSEE).

 Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-inread'); });
googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Neon lamp blunder appeared first on EDN.

Rohde & Schwarz presents its Wi-Fi 7 multi-channel single-box test solutions for R&D and production at MWC 2024

ELE Times - Wed, 02/07/2024 - 13:45

As 5G technology evolves, non-3GPP networks such as public, home and enterprise WLAN hotspots will be more and more interlinked with the 5G core. As a result, tomorrow’s smartphones will rely even more on the next generations of WLAN technology, which will be more powerful and efficient, but also more complex. At Mobile World Congress 2024 in Barcelona, Rohde & Schwarz will be showcasing its latest Wi-Fi 7 test solutions for R&D and production to meet the ever-increasing test challenges posed by the technology and the parallel operation with LTE and 5G cellular standards.

Rohde & Schwarz will display its R&S CMX500 multi-technology multi-channel signaling tester at MWC 2024 with newly added Wi-Fi 7 testing capabilities. With this functionality, the one-box tester allows R&D engineers of wireless devices to comprehensively test their design’s operation in cellular and non-cellular standards of the latest generation in a single instrument setup. In addition to this, the R&S CMP180 radio communication tester will verify a signal waveform of 480 MHz bandwidth in loopback mode, attesting to be a future-proof solution for users in R&D and production, even beyond the requirements of Wi-Fi 7.

Challenges of next-generation WLAN testing

While the market for the sixth generation of Wi-Fi, IEEE 802.11ax, is still growing, the development of Wi-Fi 7, or IEEE 802.11be, is in full swing. Wi-Fi 7 is the next generation of Wi-Fi technology, designed for extremely high data throughput. With tens of gigabits of data per second and low latency, it meets the growing demand for ultra-high-definition video streaming, virtual reality and augmented reality applications. Key elements to achieve higher throughput are an increased channel bandwidth of 320 MHz, up to 16 spatial streams and 4096 QAM modulation. In addition, for a yet-to-be-defined Wi-Fi 8 (IEEE 802.11bn) standard, even wider channel bandwidths are in discussion. Rohde & Schwarz meets these challenging characteristics with its solutions for testing Wi-Fi 7 and beyond, showcased at MWC Barcelona.

R&S CMX500 features new Wi-Fi 7 capabilities for R&D

During the development of WLAN devices, measurements of the RF TX and RX characteristics must be conducted under real-world conditions in signaling mode. The R&S CMX500 one-box tester is a multi-technology multi-channel signaling tester that is now available with integrated Wi-Fi 7 test functionality. Especially in Wi-Fi 7 where Multi-Link-Operation (MLO) is a key feature, a test environment that provides multiple RF chains is crucial. The tester’s flexibility, support for multiple radio technologies, and embedded IP test capabilities make it a versatile solution for a wide range of Wi-Fi 7-specific tests, such as 2×2 MIMO, 6 GHz band with out-of-band discovery, coexistence and E2E test capabilities.

Testing WLAN offloading with Voice over WLAN in a single box

WLAN offloading is the process of delivering data originally intended for cellular networks over WLAN. It helps reduce the amount of data carried on the cellular bands, freeing up bandwidth for other users. It is also used to ensure service continuity in scenarios where cellular coverage is insufficient, but a WLAN hotspot is available to take over the connection. For example, the handover between a cellular network and WLAN during a voice call, often referred to as Voice over WLAN, aims to provide subscribers with an uninterrupted voice call experience.

At MWC, Rohde & Schwarz will demonstrate the R&S CMX500 and its ability to test seamless traffic offloading and interworking between cellular 5G and WLAN with a single box solution. The newly integrated Non-3GPP Interworking Function (N3IWF) gateway in the R&S CMX500 makes it an easy-to-use solution for testing WLAN offloading with Voice over WLAN, enabling device manufacturers and operators to efficiently test these applications. In addition, the integrated POLQA voice quality measurement function of the R&S CMX500 offers a comprehensive and cost-effective solution to ensure the quality of experience for voice over WLAN applications at an early stage.

Future-proof R&S CMP180 R&D and production tester

In the production phase of WLAN devices, all RF measurements are performed in non-signaling mode to save time. Rohde & Schwarz has optimized the R&S CMP180 radio communication tester for this purpose. The instrument supports many cellular and non-cellular technologies including Wi-Fi 6E, Wi-Fi 7 and 5G NR FR1 up to 8 GHz in frequency with bandwidths up to 500 MHz. Leveraging the wide bandwidth, the R&S CMP180 will demonstrate at MWC its ability to verify a WLAN waveform with 480 MHz bandwidth in loopback mode, a potential waveform candidate for the yet-to-be-defined Wi-Fi 8 (IEEE 802.11bn) standard. This feature shows that the cost-effective instrument is future-proof for users not only in production but also in R&D.

Two analyzers, two generators and two sets of eight RF ports are integrated in the R&S CMP180 to support 2×2 MIMO testing in a single box. Two R&S CMP180 instruments can be combined and scaled to support four analyzers and generators for efficient testing of 4×4 MIMO access points.

Rohde & Schwarz will present its comprehensive test solutions for next-generation WLAN at the Mobile World Congress 2024 at the Fira Gran Via in Barcelona in hall 5, booth 5A80.

The post Rohde & Schwarz presents its Wi-Fi 7 multi-channel single-box test solutions for R&D and production at MWC 2024 appeared first on ELE Times.

Anritsu Enhances Network Master Pro MT1040A to Provide Support of OpenZR+

ELE Times - Wed, 02/07/2024 - 12:16

Enables accurate evaluation of a network using OpenZR+ transceivers with excellent cooling performance of the measurement module

Anritsu Corporation introduces the 400G (QSFP-DD) multi-rate module MU104014B that supports the new interface standard OpenZR+, as a module of the Network Master Pro MT1040A. OpenZR+ enables low-cost Data Center Interconnects (DCI) and metro network construction.

This measurement solution supports tests for transitioning from high-cost networks using existing WDM[*1] systems to low-cost networks using OpenZR+ transceivers. Through this solution, the MT1040A helps reduce network construction and expansion costs. With excellent heat dissipation and cooling performance, the new measurement module is able to prevent communication failures caused by the heat generated by OpenZR+ transceivers. This enables more accurate measurement of network performance.

Development Background

Datacenters and metro networks are growing at a rapid pace due to the spread of generative AI and cloud services as well as advances in digital transformation (DX) meeting social needs. Particularly, limits on available space, power-supply capacity, and air-conditioning can cause problems in scaling-up the capacity of established medium-scale datacenters so increasing the number of distributed medium datacenters can be more efficient than building new hyperscale datacenters, which is driving demand for DCI between more medium-scale datacenters.

WDM circuits provided from network operators are used widely for DCI but are expensive. To resolve this issue, the 400ZR[*2] standard was established, allowing low-cost network construction. However, the transmission distance of 400ZR is short and its data rate is only 400G. The OpenZR+ standard was created to support a longer transmission distance and data rates ranging from 100G to 400G.

OpenZR+ transceivers are inexpensive compared to the existing WDM systems. OpenZR+ supports various network configurations and is suitable for DCI construction. On the other hand, however, because OpenZR+ is capable of long-haul transmission, some OpenZR+ transceivers consume nearly 1.5 times as much power as the existing 400ZR transceivers and generate more heat. In order to measure an OpenZR+ transceiver accurately without failure, therefore, the measurement module needs to have a transceiver heat dissipation measure in place to suppress the heat generated by the transceiver. This measurement solution answers this need.

Product Overview

Network Master Pro (400G Tester) MT1040A
The MT1040A is a B5 size 400G handheld tester with excellent expandability and operability. It is a touch panel-operated field measurement instrument equipped with a 9-inch screen that is small enough to carry with a single hand. It supports a range of interfaces from 10M up to 400G.

Technical Terms

[*1] WDM
Abbreviation for Wavelength Division Multiplexing technology supporting transmission of multiple optical signals with different wavelengths in one optical cable by simulating multiple cables.

[*2] 400ZR
One interface standard for optical modules used by DCI. Facilitates lower-cost connections between data centers than conventional wavelength division multiplexing (WDM) systems.

The post Anritsu Enhances Network Master Pro MT1040A to Provide Support of OpenZR+ appeared first on ELE Times.

Pages

Subscribe to Кафедра Електронної Інженерії aggregator - Новини світу мікро- та наноелектроніки