-   Українською
-   In English
Feed aggregator
UK funding of £11.5m for 16 projects, involving Vector Photonics and Quantum Advanced Solutions, to scale-up innovations
AI-enabled COMs for medical technology
Maximilian Gerstl, congatec Product Line Manager and AI expert, and Zeljko Loncaric, congatec Market Segment Manager Medical and Infrastructure
AI in medical technology supports health professionals and enhances diagnostic accuracy. As AI algorithms must process vast amounts of data in real-time, there is a need for high-performance computing solutions such as conga-TC700 Computer-on-Modules (COMs). These COMs are powered by Intel Core Ultra processors, which uniquely integrate CPU, GPU, and NPU on a single chip.
Medical device manufacturers have consistently been at the forefront of innovation and technological progress. As early adopters, many have embraced and utilized AI systems for decades, well before widespread general acceptance.
The availability of increasingly powerful hardware components and the development of advanced algorithms enabled device manufacturers to use AI methods to significantly improve medical imaging and data analysis in the 1990s.
The emergence of machine learning for training AI algorithms in the 2000s led to even more sophisticated image analysis and the development of high-performance computing systems in fields like radiology. Since the 2010s, device manufacturers have made further strides in image processing and big data analysis.
Modular concept for medical devicescongatec’s modular concept is particularly well-suited for a wide range of medical devices that can benefit from AI integration. This includes high-performance imaging equipment such as MRI and CT scanners (Fig 1), as well as more compact devices like ultrasound, X-ray, endoscopy equipment, and mammography screening devices.
Fig 2: Portable ultrasound devices are one of the most common applications of COMs in medical technology.Beyond diagnostic devices, Computer-on-Modules also play a crucial role in therapeutic equipment such as ventilators (Fig 3). In these systems, they enable intelligent algorithms that automatically determine optimal ventilation settings for patients. In addition, these algorithms continuously analyze critical patient data and adjust parameters like respiratory rate, tidal volume, and oxygen supply.
The development, application, and significance of AI in medical technology have gained substantial momentum over the past decade. This progress is driven not only by continuous advances in computer technology but also by optimizations in AI algorithms.
Fig 3: Computer-on-Modules are even used in compact devices such as ventilators. MRI scans in under a minuteAn innovative AI algorithm for magnetic resonance imaging (MRI) now enables scans to be completed in less than a minute, significantly reducing the time patients spend in the scanner. This advanced scanning process, known as upscaling or super-scaling, requires fewer images than traditional methods. The pre-trained AI interpolates a small number of individual images into a high-resolution overall image. Moreover, the AI can independently and accurately sharpen blurry areas within images.
AI-based endoscopy devices for more accurate diagnosesAI is also being integrated into endoscopy devices, for instance to alert doctors to potentially missed lesions during examination and directing their attention to specific areas of concern. High-performance inference is crucial to ensure that this happens in real-time and that trained models execute swiftly. AI-based endoscopy devices provide doctors with a powerful tool to achieve more accurate clinical results and deliver better patient care.
Historically, medical devices required either dedicated GPGPU computing accelerators (often integrated via the classic PCIe slot and relatively large and power-hungry) or smaller AI accelerator cards designed for an M.2 slot to achieve the necessary AI performance.
AI capabilities integrated into the chipToday, more and more processor manufacturers are adapting their chip portfolios to meet the demands of artificial intelligence. By integrating AI functions directly into their products, many medical applications can now be realized more easily, quickly, and at a lower total cost of ownership (TCO), eliminating the need for additional accelerator cards.
CPU, GPU, and NPU on one chip for the first timeThe first generation of Intel Core Ultra processors (Fig 4) exemplifies this trend. These processors uniquely combine a CPU, a particularly powerful GPU (graphics processing unit), and – for the first time – an NPU (neural processing unit) on a single chip. AI applications with high computing power demands can leverage the combined power of the CPU, GPU, and NPU, whereas AI models requiring high energy efficiency and high performance per watt can be optimized to run only on the NPU.
The new NPU in the Meteor Lake processors executes machine learning algorithms and AI inference with approximately 20 times greater energy efficiency compared to standard x86 instruction sets. For image classification tasks, applications can utilize the graphics unit as a general-purpose GPU (GPGPU), achieving performance levels comparable to discrete graphics units. This results in 1.9 times faster graphics or GPGPU processing, enabling a more detailed, meaningful, and immersive user experience.
These new AI features can be easily implemented using standardized Computer-on-Modules, particularly COM Express, without requiring developers to modify existing designs.
COMs provide high flexibilityThis is precisely why COMs are popular in medical technology among other industries. As AI and its applications continue to evolve, the flexibility of COM and carrier board solutions allows developers to adapt their products to new computing requirements with minimal integration effort and software modifications. They just need to follow two simple steps: unplug the old module, plug in the new one, done!
One such Computer-on-Module suitable for demanding edge AI workloads is the conga-TC700. This COM Express Type 6 Compact module, powered by Intel Core Ultra processors (codenamed Meteor Lake), integrates all the necessary AI functions for the applications previously discussed.
Generate findings automaticallyThe conga-TC700 is particularly well-suited for vertical medical markets and their applications due to its long availability of ten years and the ease of upgrading applications based on the open COM Express standard. It enables powerful real-time computing and offers high-performance AI functions for various medical applications, including surgical robots, diagnostic systems, and high-resolution diagnostic workstations for radiologists. The latter can automatically identify critical findings, providing valuable support to medical professionals.
Beyond the new edge AI capabilities of the Intel Core Ultra platform, Intel also offers the Intel Geti software framework. This comprehensive platform facilitates the creation of powerful computer vision models. Developers benefit from a unified ecosystem that spans from machine learning in the cloud to AI-accelerated edge devices.
Optimizing AI models with OpenVINOThe congatec COMs ecosystem is further enhanced by Intel’s open-source software toolkit, OpenVINO. This tool allows for the optimization and transfer of pre-developed, often hardware-specific AI models to the customer’s platform, regardless of where they were created. OpenVINO can also manage workload distribution, intelligently deciding which tasks should be handled by the CPU, GPU, or NPU for maximum efficiency.
Comprehensive support for medical device developerscongatec offers an extensive ecosystem and design-in services to simplify and accelerate application development. The offering includes evaluation, production, and application-ready carrier boards, as well as customized active and passive cooling solutions. congatec also provides a wide range of application development services, including extensive documentation, training, signal integrity measurements, shock and vibration tests for customer-specific system designs, temperature screening, and high-speed signal compliance testing.
ConclusionAI has been a long-standing focus in medical technology, predating its adoption in other industrial markets. In fact, AI is even being touted as the new operating system for medical devices. Recent advancements in semiconductor technology have yielded microprocessors with exceptionally high computing and graphics performance. Featuring integrated NPU units, they enable faster, more accurate diagnoses while consuming less energy than predecessors. When implemented through Computer-on-Modules, today’s AI-supported medical devices become highly future-proof, making it easy to integrate upcoming technologies by simply swapping the module.
The post AI-enabled COMs for medical technology appeared first on ELE Times.
OptiMOS™ 6 135 V and 150 V MOSFETs enable higher efficiency in drives and SMPS applications
Infineon Technologies AG expands its OptiMOS 6 MOSFET portfolio with the new 135 V and 150 V product families. The devices are designed to meet the requirements of drives and switched-mode power supply (SMPS) applications and complement the recently released launched OptiMOS 6 120 V MOSFETs. With the extended portfolio, Infineon offers its customers a wide range of alternatives to select the best-fit MOSFETs for various applications. Lower switching losses benefit applications like server SMPS, solar optimizers, high-power USB chargers, and telecom. Improved conduction losses are highly beneficial for motor inverters in e-forklifts and light electric vehicles (LEVs).
Compared to the previous generation (OptiMOS 5 150 V MOSFETs), the new product families offer a reduction in on-state resistance RDS(on) of up to 50 percent, while the FOMg is reduced by 20 percent. With the very low RDS(on), their improved switching performance and excellent EMI behavior, both new families deliver unparalleled efficiency, power density, and reliability. A faster and softer body diode delivers an up to 59 percent lower Qrr, less overshoot and ringing.
The OptiMOS 6 135 V and 150 V MOSFETs are available in a variety of packages to provide customers with a range of options for best-fit products. This broad package portfolio includes TO-220, D2PAK 3-pin, D2PAK 7-pin, TOLL, TOLG, TOLT, SuperSO8 5×6 and PQFN 3.3×3.3.
The post OptiMOS™ 6 135 V and 150 V MOSFETs enable higher efficiency in drives and SMPS applications appeared first on ELE Times.
New CEA-Leti Technology Improves DC-DC Converter Efficiency and Paves the Way to Piezoelectric Converters Without Transformers
‘This Type of Converter Is Now Compatible With a Much Wider Range of Applications, Such as TVs, Phones, Tablets and Electrical Tools.’
Building on its earlier breakthroughs introducing a new way of converting electrical power using piezoelectric resonators and developing a dual-bridge piezoelectric resonator converter, CEA-Leti has paved the way to isolating piezoelectric converters without transformers.
The new topology of dual-bridge isolated piezoelectric resonator converter (DB-IPRC) provides isolation using two independent piezoelectric resonators. The improved version of the DC-DC converter significantly improves efficiency, while maintaining the converter isolation principle.
The results were reported in a paper, “Switching Assisting Circuit Improving the Efficiency of DC-DC Converters Based on Piezoelectric Resonators”, presented in this summer at PCIM Europe 2024.
The paper notes that “for a 200 V to 120 V conversion, the converter shows an efficiency of 96.2 percent with the inductive assisting circuit, 94.3 percent with the piezoelectric one and 87.4 percent without any assisting circuit. The (piezoelectric resonator) assisting circuit offers a gain in efficiency over a smaller operating range than the inductance, but leads to a flatter converter.”
Building on 2023 BreakthroughsThe work expands on previous results reported by CEA-Leti in the August 2023 issue of “IEEE Transactions on Power Electronics” in the article, “A New Isolated Topology of DC–DC Converter Based on Piezoelectric Resonators”. The article says that the new topology “uses the natural isolation of piezoelectric resonators to isolate the converter’s output from the input and vice-versa.”
The use of piezoelectric resonators instead of inductors in power conversion “will lead to a dramatic reduction in the size of power converters,” explained Ghislain Despesse, a co-author of the PCIM paper and the earlier article. “Our results make it possible to extend this type of compact conversion to isolated converters. So this type of converter is now compatible with a much wider range of applications, such as TVs, phones, tablets and electrical tools.”
“For many people, piezoelectricity is associated with energy harvesting and the idea of low power,” Despesse said. “But in power conversion, piezoelectrics operate at high frequencies, greater than 100kHz, with no limits in terms of input power. That makes it possible to reach power levels of several hundred watts. The range of applications is therefore very broad, with most converters having a rated power of less than 100W.”
The post New CEA-Leti Technology Improves DC-DC Converter Efficiency and Paves the Way to Piezoelectric Converters Without Transformers appeared first on ELE Times.
New Bosch radar-based assistance system used for first time by KTM
- Six new Bosch radar-based convenience and safety features now available worldwide
- New generation of rider assistance functions with front radar used for the first time by KTM
- Bosch Accident Research estimates that assistance functions could prevent up to one in six motorcycle accidents on German roads alone
Thanks to Bosch, motorcyclists can now feel even safer in the saddle: the technology company has unveiled six new radar-based assistance systems, including five world-firsts. According to Bosch Accident Research, these could help prevent not just one in seven, like earlier systems, but as many as one in six accidents on German roads alone. Bosch already revolutionized the motorcycle market back in 2020 with its support functions for motorcyclists. Of the six new assistance functions, four will be unveiled in a new model from leading European motorbike manufacturer KTM in November 2024 and are set to enter production in 2025. “Bosch’s declared aim is to make motorcycling even safer and more comfortable by employing innovative new technologies – without diminishing riding enjoyment,” says Geoff Liersch, head of Two-Wheeler & Powersports at Bosch. “The new functions mark yet another step in this direction, and we’re delighted to have KTM as a customer.” The manufacturer will incorporate the four Bosch rider assistance functions that use front radar. This is not the first time Bosch and KTM have worked together: in 2013, the two companies collaborated on the successful launch of the MSC motorcycle stability control system. „We’re very satisfied with the longstanding collaborative relationship between our development teams, and we’re excited that KTM is the first to put these new functions to use,” says Stefan Haist, Lead KTM Chassis Control System – Street Development.
Bosch assistance systems provide more support on two wheels Adaptive cruise control – stop and go (ACC S&G)For two-wheelers, traffic jams can be strenuous as well as dangerous. Riders have to constantly apply the clutch, use the brakes, and then start moving again. To make this task easier, Bosch launched ACC adaptive cruise control back in 2020. Once the desired speed has been set, this system constantly matches the vehicle’s speed to the flow of traffic while maintaining the necessary safe distance from the vehicle in front. Bosch has now taken this technology to a new level to offer increased riding comfort with its new ACC S&G function, which can bring the motorcycle to a controlled standstill in order to support the motorcyclist. This works best with an automatic transmission such as the one used in KTM’s new bike, which will be the first to incorporate this new function. If their motorcycle comes to a halt, there is no need for riders to use the clutch; they can set their bike in motion simply by pressing a button or briefly activating the throttle as soon as the vehicle in front starts moving.
Group ride assist (GRA)Group riding in a staggered formation is popular among motorcyclists, though it can be challenging with ACC, because the function expects the motorcycles riding in front to be in the middle of the lane. GRA is a useful addition to ACC; using an algorithm, it detects when a group is riding in a staggered formation and regulates the speed to automatically maintain the same distance from the motorcycles in front. In this way, the function assists riders in achieving a natural group formation. When not riding in groups, the GRA system works the same as ACC.
Riding distance assist (RDA)When traffic is flowing smoothly and RDA is activated, it helps maintain an appropriate distance from vehicles in front and thus prevent rear-end collisions. With ACC, a desired speed must be set; but when RDA is activated, the motorcycle can be controlled as normal via the throttle grip. While riding, the system automatically reduces the vehicle’s acceleration or applies the brakes as and when required. Riders can set the desired distance from the vehicle in front beforehand. If they wish, they can also use a switch to deactivate the function or apply the throttle to override the deceleration generated by the RDA system. This enables the function to blend naturally and comfortably into the dynamic flow of riding.
Emergency brake assist (EBA)Hazardous situations on the road require not only a rapid response but, in many cases, emergency braking. Every second counts when it comes to preventing collisions and avoiding potentially serious consequences. EBA is triggered when the system detects a risk of collision and the rider doesn’t brake hard enough. In this case, the function actively increases the wheel brake pressure further to reduce the bike’s speed as quickly as possible.
Rear distance warning (RDW)Even in a car, it can be hard to keep a constant eye on traffic approaching from behind; but on a motorcycle, it requires an extra level of concentration.
RDW monitors the situation behind the rider and flashes a warning on the display if another vehicle gets too close. Based on this warning, the rider can take mitigating action to prevent a rear-end collision.
Rear collision warning (RCW)RCW warns vehicles behind the motorcycle when a rear-end collision is imminent, for example by activating the hazard warning lights. In this way, the function protects motorcyclists from accidents caused by having to brake unexpectedly or by a vehicle failing to see them – whether waiting at traffic lights, sitting in a traffic jam, or riding in free-flowing traffic.
These new functions supplement Bosch’s worldwide portfolio of radar-based assistance systems, thus expanding the “sensory world” of the motorcycle. In addition to basic safety features, increasing importance is also being given to convenience and experience features that focus on the motorcycle and take real-life riding situations into consideration – functions that ensure not only safety and convenience, but also unmatched riding enjoyment.
The post New Bosch radar-based assistance system used for first time by KTM appeared first on ELE Times.
Elettronici Entusiasti: Inspiring Makers at Maker Faire Rome 2024
Maker Faire Rome 2024 is ready to amaze the public with an extraordinary showcase of ingenuity and technological innovation, thanks to the Elettronici Entusiasti. This collective of passionate creators, through their YouTube channels and technical expertise, has captured the attention of hundreds of thousands of followers. Their mission? To rekindle interest in electronics, making, and […]
The post Elettronici Entusiasti: Inspiring Makers at Maker Faire Rome 2024 appeared first on Open Electronics. The author is Boris Landoni