ELE Times

Subscribe to ELE Times feed ELE Times
latest product and technology information from electronics companies in India
Updated: 2 hours 52 min ago

Is it time to think beyond Lithium?

Wed, 08/21/2024 - 10:54

The prices of Lithium, the primary workhorse of energy storage solutions today, have dropped by over 60% in the past 18 months. Among many other reasons, this is attributed to a drop in EV demand globally as governments across US and EU started moderating EV related subsidies. There was also an aggressive ramp-up of capacity in China during the Covid period buoyed by the strong EV uptick which has now resulted in a supply glut. To give you a sense of the impact of this glut, we now see that LFP (Lithium Iron Phosphate) batteries are already commercially available at sub-$100 per kWh prices. This was forecast to happen only beyond 2026. At these prices, it is possible for EVs to have capital cost parity with conventional fossil fuel based vehicles which is supposed to be a massive inflection point. 

In the world of stationary energy storage, where Lead Acid batteries have ruled the roost for decades, Lithium based batteries become highly attractive substitutes with a significantly longer life and superior performance. Common sense dictates that this is about the worst time to invest in a new chemistry and that we should rather make the most of the ongoing supply glut to drive the agenda of accelerating decarbonization in India. We would however miss the forest for the trees in doing only that and nothing more.

It is a well known fact that the majority of the world’s active materials, the most critical components within a Lithium cell, are processed in China. Chinese players are also deeply backward integrated with interests in Lithium, Nickel and Cobalt mines across the world. So, financially speaking, we are merely converting our petro-dollars to lithium-dollars and directing them towards China instead of the countries that supply oil and gas. There are active investments in cell manufacturing in India propelled by the recent ACC-PLI incentives with over 50 GWh of capacity planned over the next few years. However, as long as the active material processing and the backward linkages rest with China or other countries the result will be broadly similar. This may also eliminate the possibility of using trade barriers even if local cell manufacturing capacity is fully established. India will need to do a similar backward integration and set up massive capacities for active materials processing which may largely end up becoming a catch-up game with low odds of success.

Secondly, Lithium, just like any other metal is a commodity which will go through its own commodity cycles. It is a risky gamble to leave a critical agenda like energy transition to the vagaries of commodity prices. We have had over five decades and continuing government intervention to insulate the economy from a similar commodity cycle impact of oil and gas and it has been anything but a smooth ride.

Lastly, the electrification of the economy will only be as green as the power sector that generates the electricity. While there is a lot of focus today on EVs, the other, potentially bigger, problem to solve is the greening of the generation through renewables which requires a large amount of energy storage capacity to mitigate the intermittency. For instance, NITI Aayog has estimated annual demand of around 300 GWh of storage capacity by 2030 of which about 60% would come from grid level storage alone. There is no other category, on a standalone basis, that even comes close to this requirement. This is pertinent because it should be a critical decision parameter as we think of the specific chemistries where we choose to invest the country’s limited resources.

So, in summary, we would do well to proactively invest in a chemistry or set of chemistries that are reasonably insulated from commodity cycles, could offer very attractive unit economics at scale, are well suited for grid scale storage and do not require aggressive critical mineral investments. There are many promising candidates on the horizon and Sodium-ion is one such candidate.

Sodium-ion has almost as long a history of development as Lithium-ion but did not take off earlier as Lithium-ion batteries were more compact allowing them to be used in consumer electronics resulting in their widespread adoption. Sodium-ion has however come a long way from the lab over the past few years. BYD, one of the world’s largest cell and EV manufacturers, broke ground on a 30 GWh Sodium-ion plant in January 2024 validating its role in the future of energy transition. A few weeks ago, in June 2024, the world’s largest Sodium-ion grid scale storage of 100 MW / 200 MWh was commissioned in Qianjiang, located in the Hubei province in China. 

The reason for the sudden interest in Sodium-ion and why it also makes a lot of sense for India is that it meets many of the criteria we identified earlier. For starters, Sodium is abundant and cheaply available in India which eliminates the need for backward integration.  It also enables domestic supply chains and reduces the overall cost of cells. As an added advantage, Sodium cells use low cost Aluminum collectors (instead of the more expensive Copper collectors required in Lithium) and the anode requires hard carbon (instead of the more expensive Graphite required in Lithium and also controlled largely by China). A key drawback of the Sodium-ion chemistry is that it has a lower energy density compared to Lithium. However for many applications like grid scale storage and 3W mobility, this is not a deterrent. Lastly, the process of Sodium-ion cell manufacturing is almost identical to Lithium-ion making it possible to use commercially available machinery and equipment to scale up manufacturing.

The need for India to invest in establishing local manufacturing capacities is inevitable. However, leaving that decision completely to the market forces through a chemistry-agnostic PLI scheme has the peril of driving a great short term optimization and missing the opportunity to build a truly self-reliant and thriving energy storage industry. The Chinese government took the imperative of driving investments specifically in LFP resulting in the dominance of that chemistry today. India would do well to build a point of view on the specific chemistry it would like to bet on and take control of the narrative.

Author: Venkat Rajaraman, Founder and CEO at Cygni Energy

The post Is it time to think beyond Lithium? appeared first on ELE Times.

Expanded Single Pair Ethernet Portfolio with 100BASE-T1 and 1000BASE-T1 PHY Transceivers for Network Interoperability

Tue, 08/20/2024 - 14:11

Microchip’s LAN887x PHYs offer extended reach up to 40m and are designed to be compliant with industry standards

The automotive and industrial markets are widely adopting Single Pair Ethernet (SPE) solutions for network connectivity because of the system level benefits of reducing cost, weight and cable complexity. SPE, with its proven performance and reliability in automotive applications, is now also being deployed in other segments like avionics, robotics and automation. For exceptional flexibility and interoperability, Microchip Technology today announces it has expanded its SPE solutions with its family of LAN887x Ethernet PHY transceivers supporting 100 Mbps to 1000 Mbps using 1000BASE-T1 network speeds and cable lengths up to 40m for extended reach.

For interoperability across industries, Microchip’s LAN887x PHYs are designed to be fully compliant with IEEE 802.3bp for the 1000BASE-T1 specification and IEEE 802bw-2015 for the 100BASE-T1 specification. Microchip has collaborated with the University of New Hampshire InterOperability Laboratory (UNH-IOL) to create the development test platform for 1000BASE-T1 conformance. For many automotive and industrial applications that operate in harsh environments and need to withstand extreme temperatures, these devices are also designed to be ISO 26262 functional safety ready with ASIL B classification.

These devices provide advanced diagnostics including cable fault detection, signal quality indicator, link down and errors, built in self-test, and temperature and voltage monitoring for increased reliability. To provide flexibility with varying connectivity requirements across end applications, the LAN887x PHYs support Type A operation with cable lengths up to 15m and Type B operation to support extended cable lengths of up to 40m. Both operation types include four inline connectors.

The LAN887x is a low-power solution with EtherGREEN technology for increased energy efficiency. The OPEN Alliance TC10 Sleep and Wakeup feature provides additional power savings with a maximum of 16 µA standby power consumption, which extends operating time in battery applications. An optional integrated linear regulator can optimize BOM costs by reducing the number of components in the design.

“Our comprehensive solutions, which include PHY transceivers, bridge devices, switches and development boards, make it easier for designers to implement Single Pair Ethernet technology into their designs,” said Charles Forni, vice president of Microchip’s USB and networking business unit. “The low-power sleep, extended cable reach features and functional safety support make our LAN887x devices versatile and robust solutions to support our customers’ expanding networking needs.”

The LAN887x PHYs are compatible with Microchip’s broad portfolio of microcontrollers (MCUs), microprocessors (MPUs), System-on-Chip (SoC) devices and Ethernet switches. Microchip offers a growing range of SPE solutions including PHYs, controllers and switches to support data transmission speeds from 10 Mbps to 1000 Mbps. To learn more about Microchip’s SPE solutions, visit the website.

Development Tools

The LAN887x family of PHY transceivers is supported by comprehensive hardware evaluation platforms; Type A and Type B media converter kits, SFP (SGMII), USB and PCIe plug-in boards and Linux software drivers.

Pricing and Availability

The LAN8870, LAN8871 and LAN8872 are now available in production quantities. For additional information and to purchase, contact a Microchip sales representative, authorized worldwide distributor or visit Microchip’s Purchasing and Client Services website, www.microchipdirect.com.

The post Expanded Single Pair Ethernet Portfolio with 100BASE-T1 and 1000BASE-T1 PHY Transceivers for Network Interoperability appeared first on ELE Times.

Littelfuse Enhances KSC2 Tactile Switch Series to Empower Designers with Precise Electrical Height

Tue, 08/20/2024 - 13:47

Ideal for medical, industrial, transportation, and high-end consumer applications

Littelfuse, Inc., an industrial technology manufacturing company empowering a sustainable, connected, and safer world, announced a product update on the C&K Switches KSC2 Sealed Tactile Switch product line. This surface-mounted, waterproof tactile switch series now incorporates the Electrical Height enhancement.

The KSC2 series of tactile switches for surface-mount technology (SMT) is an IP67-rated, 3.5 mm high momentary-action tactile switch featuring a soft actuator. The switches are available in several models and provide numerous electrical lifespans that can withstand various operating forces.

The latest KSC2 tactile switch, with its superior durability and extended lifespan, outperforms other switches in the market, reducing the need for frequent replacements. Its consistent performance over time instills confidence in users, ensuring reliable functionality. The KSC2 tactile switch provides clear tactile feedback, making it easier for users to know when an input has been registered. Using the redesigned KSC2 series results in a more reliable, user-friendly, and secure product, ultimately benefiting end users.

The KSC2 series design gives users a positive, adaptable tactile feeling, ideally suited for a wide range of markets and applications, including:

  • Medical: Surgical tools, healthcare wearables
  • Transportation: Door handles, window lifters, steering wheel columns
  • High-end consumer: Power tools, lawnmowers, snow blowers
  • Industrial: Elevators, automation, machinery
The KSC2 Tactile Switches offer these key features and benefits:
  • Electrical Height of Sealed Tactile Switch: Guarantees precise and reliable electrical connections by precisely defining the distance between the actuation point and bottom contact.
  • IP67 Rating: Ensures durability and reliability in harsh environments by providing resistance to dust and water up to 1 meter for 30 minutes.
  • Compatibility with Lead-Free Reflow Soldering: Enables efficient, reliable, environmentally friendly manufacturing by withstanding high temperatures and thermal cycling in lead-free, RoHS-compliant soldering processes.
  • Soft Actuator (3.5 mm high): Provides comfortable, improved user experience and precise operation via a soft actuator that offers gentle touch and consistent activation.

How it works: Electrical Height enhancement enables better precision on the electrical switching position compared to the printed circuit board (PCB) reference, which is necessary for stack-up tolerances. This new feature makes the KSC2 switch easier to integrate than other products on the market with Electrical Travel. Generally, designers need to determine the switching point position from the PCB and apply the formula: Product Height ±0.2 mm minus Electrical travel ±0.2 mm, giving a total tolerance of ±0.4 mm as a minimum. The target of dimensioning with the Electrical Height value is to avoid cumulated tolerances and to propose a functional value with tighter tolerance. Electrical Height is stable, and a standard tolerance at only ±0.15 mm or ±0.2 mm is recommended.

“This newly specified feature (Electrical Height) demonstrates the decades of experiences the Littelfuse engineers have when it comes to the integration of our products into the final application, as well as the level of control we have on our manufacturing capabilities,” said Jeremy Hebras, Vice President Digital & Technical Developments, Electronics Business Unit at Littelfuse. “By committing to the switch electrical height on this popular series, together with its tight tolerance, we are helping our customers to optimally design their products, obtain the most qualitative and consistent haptic and performance results, and ultimately enhance their product’s quality.”

The same Electrical Height enhancement is planned for additional tactile switch series in the Littelfuse/C&K Switches portfolio.

The post Littelfuse Enhances KSC2 Tactile Switch Series to Empower Designers with Precise Electrical Height appeared first on ELE Times.

Pages