Новини світу мікро- та наноелектроніки

How to Select a Timer on PIC MCUs

ELE Times - Втр, 04/16/2024 - 15:05

Timers are a common peripheral in microcontrollers (MCUs), including PIC MCUs. With so many possible choices, how do you select the right one to use in your application?

Exploring the Versatile World of Microcontroller (MCU) Timers: Applications and Selection Guide

Timers are a ubiquitous peripheral in MCUs. It should come as no surprise that there are a lot of timers, each with their own use case that they excel at. Some timers are designed to be used as part of waveform generation, while others are ideal for pulse counting. In many cases, there is no wrong choice—instead, it will depend on the requirements and resources available. For more information about the timers, please see the linked peripheral pages in the table below.

2*Hardware limit refers to the ability to rollover at an arbitrary value, rather than the maximum count possible. (E.g.: 0x1000 versus 0xFFFF for a 16-bit timer)

Timer 0 (TMR0)

TMR0 can function in 8-bit or 16-bit mode. When in 8-bit mode, the high and low byte of the timer are independent of each other. The timer rolls over when the value set in the high byte matches the low byte. 16-bit mode is a free running timer, where the timer will rollover when it reaches the value 0xFFFF. To prevent data corruption during read/writes, the register is buffered, and only latched on the low byte.

Timer 1/3/5/… (TMR1)

TMR1 is a 16-bit gated timer with support for both synchronous and asynchronous clock signals. When TMR1 is in asynchronous mode, the timer functions in sleep and can generate an interrupt to wake the microcontroller. The timer also contains a gating function which can be used to hold the current value.  To prevent corruption when reading/writing the 16-bit value, the timer can be configured to buffer the counter. The data will be latched on the low byte.

Timer 2/4/6/… (TMR2)

TMR2 is an 8-bit timer that supports one-shot and monostable modes of operation. One-shot mode triggers the timer, then clears the ON bit after reaching the hardware limit. Monostable functions identically to the one-shot mode, except that the ON bit remains set and the timer can be retriggered. TMR2 can be reset or triggered by an external signal.

Signal Measurement Timer (SMT)

The SMT is a large 24-bit timer that supports the following modes:

  • (Windowed/Gated) Counter
  • Capture
  • Time of Flight
  • (Gated) Window Measurement
  • High and Low Measurement
  • Period and Duty Cycle Measurement
  • (Gated) Timer

Note: Values in parentheses are other modes available, e.g.: Windowed Counter, Gated Counter and Counter are all valid modes.

To support these operating modes, the SMT contains four 24-bit registers. The exact behavior of the registers depends on the mode.

Universal Timer (UTMR)

The UTMR is composed of two timer modules that can operate independently of each other, or as one larger timer. The size of the UTMR may vary by device; currently on the PIC18-Q71 family, it is 16-bit per module, or 32-bits if chained together. This timer was designed to contain the functionalities of all legacy timers (TMR0, TMR1 and TMR2).

The UTMR supports both synchronous and non-synchronous clock sources and allows for reading the current count without stopping the timer, even with non-synchronous sources. To control the timer, there are three configurable events: Start, Reset and Stop.

Start events define what starts the timer. The reset event defines what resets the count back to zero. And there is a stop event, which defines what will stop the timer completely. These events can be always enabled, triggered from an input signal or disabled entirely. This enables features like monostable triggering, hardware limits and one-shot operation.

Numerically Controlled Oscillator (NCO)

Note: The size of the NCO (16-bits or 20-bits) may vary, depending on device family.

The NCO is designed to generate a periodic waveform by adding a programmable increment to an accumulated total. When the total overflows, the overflow is kept, and a pulse is generated. The pulse can be a fixed number of input clock cycles in width, or it can be 50% output at the cost of halving the output frequency. While the NCO isn’t designed for measurement, it can be used if the NCO is stopped, read and then restarted.

Capture/Compare/PWM (CCP)

The CCP has three modes—Capture, Compare or Pulse Width Modulation (PWM). The Capture/Compare modes utilize TMR1 while PWM utilizes TMR2.

The Capture mode stores the value in TMR1 when a rising or falling event occurs (depending on operating mode). The Compare mode generates an output when the value in TMR1 matches the set value in the CCP. For PWM mode, TMR2 is 8-bit, but the CCP extends it to 10-bit using the internal oscillator’s prescaler bits.

PWM

Note: For PWM that depends on TMR2, see the CCP section.

The 16-bit PWM peripheral is fully standalone—meaning that it does not utilize another system timer, unlike CCP (which depends on TMR2). There are five operating modes for generating PWM:

  • Left Aligned
  • Right Aligned
  • Center-Aligned
  • Variable Aligned
  • Compare

These modes change how the count is used to generate the output. Inside of each instance are slices, each containing two outputs. The outputs share a common frequency but have their own duty cycle registers. Additionally, the peripheral is double buffered for smooth output changes and can be synchronized with other PWM instances.

Watchdog Timer (WDT)/Windowed Watchdog Timer (WWDT)

The WWDT is a special timer designed to detect a deadlock in the microcontroller. A WWDT is a timer that runs the background. Periodically, software must clear it through a special sequence, or it will reset the microcontroller. WDT and WWDT differ only in that the WWDT has a “Window” feature. The “Window” feature can require the clearing sequence to be performed within a certain time window, rather than any time before the timer rolls over. This prevents a deadlock from being undetected by clearing the timer continuously.

Selecting the Timer and Learning More

After understanding the timer peripherals, select which timer closest matches the features needed in the application. In many cases, there are multiple possible timers that can perform the task. In this case, select the simplest timer—this leaves timers with more capabilities available for future use. The device datasheet, application notes and technical briefs go into more detail on how all of these timers operate and the registers associated with them. Code examples that use a specific timer can be found by searching MPLAB Discover.

The post How to Select a Timer on PIC MCUs appeared first on ELE Times.

Infineon receives “GaN Strategic Partner of the Year” award from Chicony Power Technology

ELE Times - Втр, 04/16/2024 - 13:57

Chicony Power Technology, a worldwide leading manufacturer of power supplies and a pioneer in power electronics, has announced the winners of its Annual Partner Awards, honoring Infineon Technologies AG as its 2023 “GaN Strategic Partner of the Year”.

Infineon has been recognized by Chicony Power as its top partner for gallium nitride (GaN)-based power supplies, including notebook adapters, as well as ICT applications in gaming, storage and servers. This acknowledgment is the result of Infineon’s high standards for product selection, application expertise, high reliability and cost-effectiveness.

GaN stands out as one of the most crucial technologies which are essential for improving the efficiency of power supplies and reducing their product size. Pooling Infineon’s leading GaN expertise and Chicony Power’s remarkable capabilities in power supply system design, the win-win collaboration has helped push the boundaries of innovation and further strengthened both companies’ leading positions in energy-efficient power solutions. As of today, the GaN adoption rate in Chicony Power’s high-watt adapters has reached 20 percent, and this rate is rapidly increasing.

“Unrivalled R&D resources, a comprehensive application understanding and a large number of customer projects let Infineon continuously drive its roadmap for becoming a leading GaN Powerhouse,” said Adam White, Division President Power & Sensor Systems at Infineon Technologies. “The Strategic Partner of the Year award from Chicony Power is a great honor for us. We see this as part of our common mission to drive decarbonization and digitalization together.”

“We’re pleased to honor Infineon, which has played a pivotal role in driving customer success throughout 2023, as our GaN Strategic Partner of the Year,” said Peter Tseng, President of Chicony Power Technology. “Our Vision is to be a global pioneer in the implementation of new technology that enhances power supply efficiency, reduces the carbon footprint of power supplies and helps create a greener world. We would like our Annual Partner Awards to encourage Infineon and all other partners to maintain the momentum in jointly promoting GaN technology in the market alongside Chicony Power, making the power industry greener and cleaner.”

The post Infineon receives “GaN Strategic Partner of the Year” award from Chicony Power Technology appeared first on ELE Times.

RenewX 2024 – Fuelling India’s Renewable Energy momentum in the southern hub of Hyderabad

ELE Times - Втр, 04/16/2024 - 13:38
  • 8th edition of the premier show by Informa Markets in India to be held on 26th and 27th April 2024 at HITEX Exhibition Centre
  • RenewX 2024 will bring together over 5500 visitors, more than 150 exhibitors showcasing over 180 brands

Informa Markets in India, India’s leading B2B exhibitions organizer is gearing up to host the 8th edition of South India’s largest expo for renewable energy and electric vehicle market, RenewX. Scheduled to take place at Hall 1 & 3, HITEX Exhibition Centre, Hyderabad on 26th and 27th April 2024, the expo aims to bring together renewable energy and sustainable mobility professionals under one roof. It aims to set a growth trajectory for the sector, enabling networking, collaboration, and learnings from industry experts and thought leaders.

The show will attract a diverse audience including architects, real estate developers, commercial & industrial consumers, facility managers, energy consultants, independent power producers, EPCs, distributors/dealers, system installers and integrators, regulatory bodies, municipalities, local authorities and more.

Opening Doors to South India’s Renewable Energy Horizon

RenewX 2024 is a gateway to discover various opportunities and build successful business relationships. Building on the success of last year’s event, the show is expected to welcome over 5500 visitors, and the presence of more than 150 domestic and international exhibitors including a few Chinese companies participating through their India operation team. Key exhibitors include top of the line organisations such as Premier Energies Ltd, Waaree Energies, Goldi Solar, Vikram Solar, Gautam Solar, Swelect Energy, Emmvee Solar, Jinko Solar, Rayzon Solar ,SMA Solar, Grew Energy, Credence Solar, Pahal Solar, , EVVO Solar, ICON Solar, MPL Group, Luminous Power Technologies, Microtek , Livguard Solar, Deye Inverter, Valeo products, Exide Industries, Polycab, and Impulse Green Energy, among many others.

A wide array of over 180 brands will be showcased with products and services spanning photovoltaic modules, hybrid systems, inverters, charge controllers, batteries, solar water heaters/cooling systems, solar pumps, testing and monitoring systems, project consultants, Wind-solar Hybrid Power System Integrators, EV & charging infra, assemblers and EPC players.

Emphasizing the significance of RenewX 2024, Mr. Yogesh Mudras, Managing Director, Informa Markets in India, saidIndia’s steadfast commitment to reducing carbon intensity by less than 45% by the decade’s end and achieving net-zero carbon emissions by 2070 underscores the imperative of carbon-free growth on our journey towards a $5 trillion economy. With solar PV capacity representing around 55% of our total renewable capacity, and the government’s unwavering focus on sustainable growth, solar energy emerges as a vital solution to meet our energy needs and ensure security, reaffirming India’s global leadership in renewable energy and dedication to sustainability. The recent approval of the Surya Ghar Yojana scheme for installing rooftop solar in 1 crore households further exemplifies India’s advancements in solar technology and manufacturing capabilities, cementing solar energy as a cornerstone of India’s sustainable future. Complemented by wind, biomass, EV, and hydropower, the nation’s focus on renewable energy has never been stronger.

RenewX 2024, set in the vibrant Southern hub of Hyderabad, will serve as a timely catalyst for elevating businesses and knowledge to new heights. As in previous editions, the RenewX conference, along with the exhibition, will foster a platform for understanding manufacturing challenges and collaboratively crafting solutions, with a special emphasis on South India’s unique context,” he further added.

A Comprehensive and Engaging event

Telangana State Renewable Energy Development Corporation will be the nodal agency at the show, facilitating a two-day conference featuring a CEO conclave and product showcase. The conference will comprise 7 sessions with over 40 speakers, discussing a wide array of topics such as Indian solar manufacturing, RE targets, solar technology advancements, net-zero and E-mobility, AgriPV, Bioenergy, and more. Distinguished dignitaries slated to speak include Sri Ajay Mishra, IAS, Director General, Renewable Energy Society of India (RESI) & (former) Spl. Chief Secretary, Govt of Telangana , Sri N. Janaiah, Vice Chairman & Managing Director, TSREDCO,  Mr. Abhijeet Sinha, National Program Director Ease of Doing Business | Project Director- NHEV, DIISHA, Drone Pilot | President- CPOs of India, Mr Praveen Arora, Partner & Practice Lead- Energy & Infrastructure at BTG Advaya Mr. Amit Shukla, Senior VP and business Head, Energy Solutions, Luminous Power Technologies.;; Mr. Swapnil Wakade, Business Head – Rooftop Solar, Ecofy; Mr.Sumit Kumar – AVP Technology, Vikram Solar; Mr. Gaurav Kedia, Chairman, Indian Biogas Association; Mr. Rohit Dhar , COO, Emmvee Group, among others, will be sharing their valuable insights.   The format would be a diverse spread of interactive channels like Confenrence Sessions, Multiple Workshops and Seminars and a Bioenergy Conference.

Industry Association & Knowledge Partners Support

This year the expo garnered extensive support from partners and associations include TSREDCO (Telangana State Renewable Energy Development Corporation Ltd), IBA (Indian Bio-gas Association) , IGEF (Indo German Energy Forum), TELMA, TSEA (Telangana Solar Energy Association). The show’s knowledge partners include Frost & Sullivan, Wood Mackenzie, Yole Group, National Highway for EV and Ease of doing Business.

Driving India Towards a Sustainable Energy Future

India’s Renewable Energy Sector has experienced remarkable growth, driven by a convergence of factors including favourable Government Policies, cost reductions, increased investment, technological advancements, and heightened environmental awareness. Ranked as the 4th largest installed capacity for renewable energy globally, India’s solar energy sector has emerged as a major player in grid-connected power generation. With ambitious targets set to reduce the nation’s carbon intensity by less than 45% by the end of the decade, achieve 50% cumulative electric power installed by 2030 from renewables, and attain net-zero carbon emissions by 2070, India stands at the forefront of sustainable energy development. Steadfast in its commitment to prioritize solar power, India aims to surpass the 500 GW target before 2030, solidifying its global leadership in renewable energy and unwavering dedication to sustainability.

The post RenewX 2024 – Fuelling India’s Renewable Energy momentum in the southern hub of Hyderabad appeared first on ELE Times.

Research cooperation: LANXESS and IBU-tec to develop iron oxides for LFP battery material

ELE Times - Втр, 04/16/2024 - 12:42
  • Collaboration aims to improve performance of LFP cathode material
  • Reduced carbon footprint of batteries through use of local raw materials
  • Focus on European value chain for LFP batteries

Specialty chemicals company LANXESS and battery materials manufacturer IBU-tec advanced materials have entered into a research cooperation in the battery sector. The goal of the two German companies is to develop innovative iron oxides for the production of cathode material for LFP batteries and thus increase the performance of this battery type. The companies aim to optimize the electrochemical properties of LFP batteries, such as energy density, charging speed and number of charging cycles.

More and more car manufacturers are increasingly relying on LFP (lithium/iron/phosphate) batteries for their e-vehicles – especially for volume models. Compared to NMC (nickel/manganese/cobalt oxide) and NCA (nickel/cobalt/aluminum oxide) cell chemistry systems, LFP technology offers cost advantages of up to 50 percent and promises safer use, as the system makes the batteries virtually impossible to ignite.

Strengthening European value chains

The demand for LFP in Europe is expected to grow by 20 percent per year until 2030. So far, however, this demand has been met almost exclusively by non-European suppliers. With their development, both companies aim to contribute to the establishment of an independent, robust value chain in the European LFP battery market, while at the same time reducing the carbon footprint of batteries.

IBU-tec, based in Weimar, Germany, is currently the only European manufacturer of LFP cathode material. LANXESS operates the world’s largest plant for the key raw material iron oxide in Krefeld-Uerdingen. The company has almost 100 years of experience in developing this material and can supply iron oxide particles for LFP batteries in the required size, purity, morphology and quantities.

Michael Ertl, Head of the Inorganic Pigments business unit at LANXESS, said: “As IBU-tec is currently the only European manufacturer of LFP cathode materials, the company is the ideal partner for us to develop the new material, which is a key component for batteries in e-cars and stationary energy storage systems. This is an important contribution to sustainability and the development of a European value chain in the field of battery materials.”

Jörg Leinenbach, CEO of IBU-tec, said: “With LANXESS, we are gaining one of the largest, globally positioned chemical companies as a strong partner in the battery sector. With the joint product development we will combine our expertise and together we will drive the development of the European LFP battery market and establish an independent value chain. We see this cooperation as an important step towards opening up the market. IBU-tec will inform about further material developments in the battery sector with new application possibilities in January.”

LANXESS: Wide range of solutions for electromobility

In addition to key ingredients for LFP precursors, LANXESS offers many other solutions for electromobility and the battery industry, including raw materials for electrolytes, battery coolants, flame retardants for plastic components in electric vehicles and charging infrastructure, and orange dyes for coloring high-voltage components.

The post Research cooperation: LANXESS and IBU-tec to develop iron oxides for LFP battery material appeared first on ELE Times.

ams OSRAM and DOMINANT collaborate to advance automotive ambient lighting

Semiconductor today - Втр, 04/16/2024 - 12:29
ams OSRAM GmbH of Premstätten, Austria and Munich, Germany has joined forces with Malaysia-based automotive LED maker DOMINANT Opto Technologies in a strategic partnership aimed at integrating ams OSRAM’s Open System Protocol (OSP) into DOMINANT Opto Technologies’ next-generation intelligent RGB LEDs designed for automotive ambient lighting...

Microchip’s acquisition meshes AI content into FPGA fabric

EDN Network - Втр, 04/16/2024 - 10:51

Field programmable gate arrays (FPGAs), once a territory of highly specialized designs, are steadily gaining prominence in the era of artificial intelligence (AI), and Microchip’s acquisition of Neuronix AI Labs once more asserts this technology premise.

The Chandler, Arizona-based semiconductor outfit, long known for highly strategic acquisitions, has announced to acquire Neuronix, a supplier of neural network sparsity optimization technology that enables a reduction in power, size, and calculations for tasks such as image classification, object detection and semantic segmentation.

The deal aims to bolster the AI/ML processing horsepower on the company’s low- and mid-range FPGAs and make them more robust for edge deployments in computer vision applications. Microchip will combine Neuronix’s neural network sparsity optimization technology with its VectorBlox design flow to boost neural network performance efficiency and GOPS/watt performance in low-power PolarFire FPGAs.

Neuronix AI Labs has been laser-focused on neural network acceleration architectures and algorithms, and Microchip aims to incorporate Neuronix’s AI frameworks in its FPGA design flow. The combination of Neuronix AI intellectual property and Microchip’s existing compilers and software design kits will allow AI/ML algorithms to be implemented on customizable FPGA logic without a need for RTL expertise or intimate knowledge of the underlying FPGA fabric.

Microchip stuck to its FPGA guns even when the Altera-Xilinx duo took over the market before being acquired by Intel and AMD, respectively. Microchip executives maintained all along that FPGAs were a strategic part of its embedded system business. Now, when a plethora of applications continue to populate the edge, Microchip’s vision of embedded systems incorporating low-power FPGA fabrics looks more real than ever.

In short, the acquisition will help Microchip to bolster neural network capabilities and enhance its edge solutions with AI-enabled IPs. It will also enable non-FPGA designers to harness parallel processing capabilities using industry-standard AI frameworks without requiring in-depth knowledge of FPGA design flow.

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post Microchip’s acquisition meshes AI content into FPGA fabric appeared first on EDN.

Color sensor/detector without microcontroller up-to 7 colors

Reddit:Electronics - Пн, 04/15/2024 - 20:53
Color sensor/detector without microcontroller up-to 7 colors

This circuit can detect 7 different colors (red, green, blue, yellow, cyan, magenta, white) without any kind of microcontroller just with ldr and rgb led and bunch of ics like 555 timer that provides a clock pulse for 4017 ic so it can light up the rgb led with each pin separated from the other and shift register to save the data from the op amp which is connected to the ldr and bunch of diodes as rom memory and 7 segment display to show the first letter of the color.

submitted by /u/winter__g
[link] [comments]

The Godox V1 camera flash: Well-“rounded” with multiple-identity panache

EDN Network - Пн, 04/15/2024 - 19:33

As regular readers already know, “for parts only” discount-priced eBay postings suggestive of devices that are (for one reason or another) no longer functional, are often fruitful teardown candidates as supplements to products that have died on me personally. So, when I recently saw a no-longer-working Godox V1 camera flash, which sells new for $259.99, listed on eBay for $66, I jumped on the deal. For teardown purposes, yes. But also, for reuse of its still-functional accessories elsewhere. And, as it turns out, to solve a mystery, too.

I’d long wanted to get inside the V1 for a look around (although its formidable price tag had acted as a deterrent), in part because of its robust feature set, which includes:

  • High 76 Ws peak power (5600K color temperature)
  • Fast (~1.5 sec) recycle time, and 480 full-power illuminations per battery charge cycle
  • Supplemental 2 W “modeling lamp” (3300K color temperature)
  • 28-105 mm zoom head (both manual and auto-sync to camera lens focal length setting options)
  • 0°-330° horizontal pan and -7°-120° vertical tilt head
  • Multiple camera shutter sync modes
  • Multiple exposure control modes
  • Auto (camera sync) and manual exposure compensation modes
  • Camera autofocus-assist beam, and
  • Last, but definitely not least, multi-flash master and slave sync options

And partly because this device, like many of the flash units from both Godox and other third-party flash manufacturers such as Neewer, comes in various options that support multiple manufacturers’ cameras. In the case of the V1, these include (differentiated via single-character suffixes in the otherwise identical product name):

  • C: Canon
  • N: Nikon
  • S: Sony
  • F: Fujifilm
  • O: Olympus/Panasonic, and
  • P: Pentax

That all aside, what probably caught your eye first in the earlier “stock” photo was the V1’s atypical round head, versus the more common rectangular configuration found in units such as Godox’s V860III (several examples of which, for various cameras, I also own):

The fundamental rationale for both products is their varying output-light coverage patterns:

Now, about those earlier-mentioned accessories:

The VB26-series battery used by the V1 is also conveniently also used by Godox’s V850III and V860III flash units, as well as the company’s RING72 ring light (optionally, along with the four-AA battery power-source default), and with Adorama’s Flashpoint-branded equivalents for all of these Godox devices, several of which I also own:

Here’s the capper. Shortly after buying this initial “for parts” Godox V1, for which the flash unit itself was the only thing nonfunctional, I came across another heavily discounted V1 that, as it turned out, worked fine but was missing the battery and charging cable. Guess what I did? 😉

About that battery cable…readers with long memories may recall me mentioning the VB26 before. The earlier discussion was in the context of the Olympus/Panasonic version of the V1 (i.e., the V1O), which had come with the original VB26 battery, and which I learned couldn’t be charged from a USB-C power source even though the battery charging dock had a USB-C input; a USB-A to USB-C adapter cable (along with a USB-A power source) was instead necessary. Well, in testing out the battery this time, I absentmindedly plugged it and its companion dock into a handy USB-C power source (and USB-C to USB-C cable) that normally finds use in charging my Google Pixel Buds Pro earbuds…and everything worked fine.

In retrospect, I remembered the earlier failure, and in striving to figure out what was different, I noticed that the battery this time was the more recent VB26A variant. I’d known that both it and its even newer VB26B successor held a bit more charge than the original, but Godox presumably fixed the initial USB-PD (Power Delivery) shortcoming in the evolutionary process, too (the charging circuitry is contained within the battery itself, apparently, with the dock acting solely as a “dummy” wiring translator between the USB-C connector and the battery terminals).

Enough of the prep discussion, let’s get to the tearing down. What we’re looking at today is the V1C, i.e., the Canon variant of the V1 (here’s a user manual):

I’ve long assumed that the various “flavors” of the V1 (and flash units like it) were essentially identical, save for different hot shoe modules and different firmware builds running inside. Although I won’t be dissecting multiple V1 variants today, the fact that they share a common 2ABYN001 FCC certification ID is a “bit” of a tipoff. I hope that this teardown will also shed at least a bit of added light on the accuracy-or-not of this hypothesis.

Open the box, and the goodies inside come into initial view. The cone-shaped white thing (silver on the other side) at top is a reflector, a retailer bundle adder intended for “bounce” uses:

As-usual accompanied by a 0.75″ (19.1 mm) diameter U.S. penny for size comparison purposes are the primary accessories: the standard USB-A to USB-C charging cable below the coin, and to the right, top-to-bottom, the battery, AC-to-DC converter (“wall wart”) and charging dock:

A closeup of the wall wart, complete with specs:

The underside of the battery, this time (as previously noted) the “A” version of the VB26:

And the charging dock, common to all VB26 battery variants:

Lift out the case containing the V1, and several other accessories come into view below it. At bottom right is a mini stand to which you mount the hot shoe when the flash unit isn’t being directly installed on/controlled by the camera (i.e., when the V1 is in wireless sync “slave” mode). And above it is another retailer adder, a goodie bag containing a lens cleaning cloth, a brush (useful when, for example, carefully brushing dust off the image sensor or, for a DSLR, the mirror) and a set of soft gloves.

Flip up the case top flap, and our victim comes into initial view:

Here’s a view of the backside, with the flash head near-vertical. The V1 has dimensions of 76x93x197 mm and weighs 420 g without the battery (530 g with it):

Here’s one (operating mode-dependent) example of what that LCD panel looks like with a turned-on functional V1:

Flip the V1 around for the front view, with the head at the same near-vertical orientation:

A closeup of the label (note, too, the small circular “hole” below the right corner of the label; file it away in your memory for later, when it’ll be important):

And of the translucent front panel, alluding to some of what’s inside:

The circular section at the bottom is for the focus assist beam, and to its left you can faintly see the wireless sensor used to sync the V1 (in either master or slave mode) with other flash units that support Godox’s 2.4 GHz “X” protocol as well as standalone transmitters and receivers:

Now’s as good a time as any, by the way, to show you Neewer’s reminiscent-named Z1:

The V1 and Z1 look the same, are similarly featured, and both use the 2.4 GHz ISM band for wireless sync purposes. Just don’t try to sync them to each other because the protocols differ.

Here’s a straight-on closeup of the V1 flash head:

That circular area at the top, which is toward the ground in normal operation (when the flash head isn’t pointed toward the sky, that is) is the modeling lamp, constantly on when activated versus a traditional “flash”. Here’s what it looks like on, again with an alternative functional V1:

And here are examples of the modeling lamp in use.

The ring around the outside of the flash head lens is metal, by the way, affording an opportunity for easy attachment of various magnet-augmented accessories:

Finally, some side views; first the left (when viewed from the front), containing the compartment “hole” into which the battery is inserted:

And now the right, containing the battery latch, release button and contacts:

The flash head at both extremes of its tilt range:

And a closeup of the QR code sticker on this side of the flash head:

Back to the right-side battery compartment closeup. In the earlier photo, you might have noticed what looked like a protective “flap” to the right of the cavity, and above the battery-release button. If so, you’d be right:

The round female connector at the top is not for headphones. It’s a 2.5 mm sync cord jack, for mating to a camera or transmitter as an alternative to a hot shoe or wireless connection. Below it is a USB-C connector used to connect to a computer for updating the flash unit firmware. On a hunch, I mated this supposedly “dead” V1 to my Mac and was surprised to find that the flash unit was recognized. I could even update its firmware, in fact, and all without a battery installed:

Even though this V1’s all-important illumination subsystem is DOA, it’s apparently not all-dead!

Last, but not least, let’s have a look at the hot shoe:

As previously mentioned, my working theory is that this (along with the software running inside the device) is the key differentiator between the V1 variants. It’s (perhaps unsurprisingly) also the most common thing that breaks on V1s:

So, I’ll be holding onto this part of the device long-term, both for just-in-case repair purposes and for another experimental project that I’ll tell you about later…

Did you notice the four screws holding the hot shoe assembly in place? Let’s see if their removal enables us to get inside:

Here’s the removed hot shoe assembly, both in the “loose” and “latched” positions (controlled by rotation of that grey button you see in the photos):

And here’s what’s inside:

Next step, remove the four “corner” screws whose heads were obscured by white paste in previous photos:

The outer bracket piece now lifts away:

Leaving an assemblage that, for already mentioned reasons, I’m not going to further disassemble, in order to preserve it for potential future use:

Unfortunately, although this initial disassembly step gave me a teaser peak at the insides, I wasn’t yet seemingly able to proceed further from this end:

So, I returned my attention to the flash head (the other end), around which I’d remembered seeing a set of screws that held the plastic cover and metal ring in place:

Underneath it was a Fresnel lens.

From Wikipedia:

A Fresnel lens…is a type of composite compact lens which reduces the amount of material required compared to a conventional lens by dividing the lens into a set of concentric annular sections…The design allows the construction of lenses of large aperture and short focal length without the mass and volume of material that would be required by a lens of conventional design. A Fresnel lens can be made much thinner than a comparable conventional lens, in some cases taking the form of a flat sheet.

With the Fresnel lens removed, the Zenon tube assembly comes into clear view:

If you look at the bottom, you’ll see a two-rail “track” on which it moves forwards and backwards to implement, in conjunction with the fixed-position Fresnel lens, the zoom function.

I was able to unclip the brackets holding the fronts of both halves of the head assembly together, but further progress eluded me:

So, I next tried peeling away the round rubberized pieces covering both ends of the “tilt” hinge:

A-ha! Screws!

Now for the other side…

You know what comes next…

And now, one half (the lower half, to be precise) of the flash head enclosure lifts right off:

I initially thought that this mysterious red paste-covered doodad might be a piezoelectric speaker, for generating “beep” tones and the like, and its location coincides with the “hole” below the label that I showed you earlier, but…again, hold that thought:

We now get our first clear views of the flash head insides. Check out, for example, that sizeable heatsink for the modeling lamp LED!

Four screws hold the assembly in place within the other half-enclosure. Let’s get rid of these:

Liftoff!

Here’s our first glimpse of one side of this particular PCB. Look at that massive inductor coil!

Disconnect a couple of ribbon cables:

Tilt the assembly to the side:

Next, let’s remove the modeling lamp LED-plus-heatsink assemblage:

The two are sturdily glued together, so I won’t proceed further in trying to pry them apart:

Now let’s remove the PCB from the white plastic piece it’s normally attached to:

Let’s look first at the now-revealed PCB backside. First off, unsurprising mind you given the high current flow involved but still…look at those thick traces:

See those two switches? The motor position-controlled Zenon tube bumps up against them at the far end of its zoom travel range, seemingly disabling further motion in that direction (why there aren’t similar switch contacts at the rails’ other ends isn’t clear to me, however):

Finally, note the red-color, white paste-capped device in the upper right corner. Its “TB” PCB marking, along with the wire running from it to the Zenon tube, suggests to me that it may be a thermal breaker intended to temporarily disable the flash unit if it gets too hot. Ideas, readers?

Let’s now flip the PCB back over to the side we glimpsed earlier:

Time for a brief divergence into flash unit operation basics. In the “recharge” interval between flash activations, a sizeable capacitor (which we haven’t yet seen) gets “filled” by the battery electron flow. At least some of that stored capacitive charge then gets “dumped” into the Zenon tube. But here’s the trick…the Zenon tube’s illumination time and intensity vary depending on the camera’s desired exposure characteristics. So where does any “extra” current go, if not needed by the Zenon tube?

Initially, the excess electrons were instead shunted off to something called the quench tube, a wasteful approach that both limited battery life and unnecessarily lengthened recharge time. Nowadays, either gate turn-off (GTO) thyristors or insulated-gate bipolar transistors (IGBTs) instead find use in cutting off the current flow from the capacitor, saving remaining charge for the next Zenon tube activation. I’m admittedly no power electronics design expert, so I can’t confidently say which approach is in use here. To assist the more knowledgeable-than-me readers among you (numerous, I know), note that the two devices above the coil are S6008D half-wave, unidirectional, gate-controlled rectifiers; the IC above them has the following marks:

EIC
SN
5M

Again, I say: further insights, readers?

Before moving on, let’s take a closer look at that zoom motor:

And now, let’s figure out how to get inside that hinge (where, I suspect, we’ll find that aforementioned sizeable capacitor). Looking closely at the ends I’d previously exposed, I noticed two more screws on each, but removing them didn’t seemingly get me any further along:

In the process of unscrewing them, however, I realized that I hadn’t yet showed you the pan range supported by the head:

And in the process of doing that, I noticed more screws underneath the pan hinge:

That’s more like it (although I’m now inside the main flash body, not yet the hinge above it)!

Let’s start with the now-detached back panel:

The LCD behind it is visible through the clear section, obviously, but don’t forget about the ribbon cable-fed multi-button-and-switch array below it:

That same panel piece from below, with another look at the ribbon cable:

And finally, that same panel piece from above:

Let’s return to that earlier inside view and get those four screws off:

The multi-button/switch assembly now lifts away straightaway:

And that black piece then pops right off, too:

Here’s a cross-section view of the circular multi-switch structure:

And with that, let’s return to the multi-sided structure we saw earlier, inside the main body:

Next are a series of sequential wiring disconnection shots; there are multiple ribbon cable harnesses, as you’ll see, some of them terminating in the tilt hinge above and some passing through the tilt hinge to the flash head above it:

 

With the front half of the main body shell now free and clear, let’s look at what’s inside:

That thing toward the bottom center, with a blue/black wire combo coming out of it, is the aforementioned focus assist beam. But what about the one in the upper left, with red and black wires coming out of it? Here’s a top view of the front-half piece; note the “hole” at bottom right at the corresponding external location:

Remember the mystery device inside the flash head, with a reminiscent red-and-black wire harness and external “hole”, that I initially thought was a speaker and asked you to remember?

I’d originally realized it wasn’t a speaker when I took my functional V1, activated its “beep” function and discerned that the sound wasn’t coming from there. But when I saw the second similar device-and-hole, I grabbed my functional (and fully assembled) V1 again and realized that when (and only when) the flash head was pointed horizontal and forward, the two “holes” lined up. My working theory is that one of the devices is an IR transmitter with the other an IR receiver, and that this alignment is how the flash figures out when the user has both the pan and tilt settings at their “normal” default positions. For what reason, I can’t yet precisely sort out; there’s no indication I can find in the user manual that the V1 operates any differently when pan and/or tilt are otherwise oriented. But conceptually, I could imagine that the flash’s integrated controller and/or connected camera might be interested in knowing whether the unit is being used for conventional or “bounce” purposes from an operating mode, exposure setting and/or other standpoint. Once again, readers: ideas?

At this point, by the way (and speaking of flash heads), the top half of this part of the case spontaneously disconnected from the pan-and-tilt hinge assembly:

Returning to the main body, let’s see what’s inside. Back, complete with the LCD (the on/off switch is in the lower right corner):

Right side:

Left side (note the battery latch, contacts, etc. initially highlighted before):

Front, with an initial “reveal” of the primary “power” PCB (although there’s plenty of analog stuff in the earlier flash head-located PCB too!):

Top:

And bottom, revealing a secondary “digital” PCB that we’ll discuss further shortly:

There’s one more PCB of note, actually, which isn’t visible until after you remove two screws and disconnect the LCD assembly, then flip it around:

Here’s where the main system controller can be found, therefore why I refer to it as the primary “digital” PCB. It’s the APM32F072VBT6 (PDF), from a Chinese company called Geehy Semiconductor. The entire product family, as you’ll see from the PDF, contains dozens of members, based both on the Arm Cortex-M0+ and Cortex-M3. This particular SoC proliferation (at the top of the table labeled “APM32 MCU-ARM Cortex -M0+” in the PDF, for your ease of locating it) integrates a Cortex-M0+ running at 48 MHz along with 128 Kbytes of flash memory and 16 Kbytes of RAM. I can’t find a discrete flash memory chip for code storage on the PCB; the IC in the lower right corner is a LMV339 quad-channel comparator, and pretty much everything else here are connectors and passives. Oh, and the speaker’s to the left of the comparator 😉.

Here’s a side view, showing the USB-C and 2.5 mm sync connectors:

And flipping the assembly back over, as well as flipping the LCD upside-down, you’ll find that this side of the PCB is effectively blank, save for the earlier-noted power switch:

Next, continuing with the “digital” theme, let’s look more closely at the bottom-mounted PCB:

This one requires a bit of background explanation.

I’ve already told you that the primary 2.4 GHz transceiver system for multi-unit sync purposes is upfront behind the red translucent panel, and you’ll see it again shortly. But there’s another 2.4 GHz transceiver system in the V1, this one Bluetooth-based and designed to enable flash unit configuration and control from a wirelessly tethered smartphone or tablet in conjunction with a Godox (or Adorama) app. That’s why, unsurprisingly now that you know the background, the two dominant ICs on this side of the PCB are Texas Instruments’ CC2500 low-power 2.4 GHz RF transceiver and, to its right, TI’s CC2592 front-end RF IC. Flip the PCB over:

and again, unsurprisingly, you’ll find the embedded Bluetooth antenna.

Finally, let’s look more closely at what I referred to earlier as the primary “power” PCB:

Many of the ICs here are similar to the ones we saw in the earlier flash head-located PCB, such as two more of those mysterious ones labeled “EIC” but now with slightly different second- and third-line marks:

EIC
SK
5B

And on the other side:

is more analog and power circuitry, including a sizeable capacitor at the bottom (albeit not as sizeable as I suspect we’ll see shortly!).

Speaking of which, let’s close by looking closely at that tilt hinge assembly. Here it is from the front:

Top:

and back:

All are fairly unmemorable. The left side is not much less boring:

At least until I tilt it slightly, revealing a green tint indicative of a PCB inside:

The right side is quite a bit busier, with wiring harnesses formerly running up to the flash head:

Even more titillating when I again tilt it, as well as moving wiring to the sides:

And speaking of wiring (and titillating relocation of same), here’s the bottom:

Cautiously, both because I don’t know exactly what’s on the other side and, if I’m right and it’s an enormous capacitor, whether it’s fully discharged, I proceed:

Enormous capacitor, indeed!

Refilling this sizeable “electron gas tank”, folks, explains the 1.5 second recycle time between flash activations, and makes the 480 activations per battery recharge all the more remarkable:

And with that, slightly more than 4,000 words in, I’m done! Not quite “in a flash”, but I still hope you found this teardown as interesting as I did. Sound off with your thoughts in the comments! And in closing, enjoy these two insides-revealing repair videos that I found during my research:

Brian Dipert is the Editor-in-Chief of the Edge AI and Vision Alliance, and a Senior Analyst at BDTI and Editor-in-Chief of InsideDSP, the company’s online newsletter.

 Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post The Godox V1 camera flash: Well-“rounded” with multiple-identity panache appeared first on EDN.

A sneak peek at HBM cold war between Samsung and SK hynix

EDN Network - Пн, 04/15/2024 - 19:17

As high-bandwidth memory (HBM) moves from HBM3 to its extended version HBM3e, a fierce competition kicks off between Samsung and SK hynix. Micron, the third largest memory maker, has also tagged along to claim stakes in this memory nirvana that is strategically critical in artificial intelligence (AI) designs.

HBM is a high-value, high-performance memory that vertically interconnects multiple DRAM chips to dramatically increase data processing speed compared to conventional DRAM products. HBM3e is the fifth generation of HBM following HBM, HBM2, HBM2E and HBM3 memory devices.

HBM helps package numerous AI processors and memories in a multi-connected fashion to build a successful AI system that can process a huge amount of data quickly. “HBM memory is very complicated, and the value added is very high,” Jensen Huang, Nvidia co-founder and CEO, said at a media briefing during the GPU Technology Conference (GTC) held in March 2024 at San Jose, California. “We are spending a lot of money on HBM.”

Take Nvidia’s A100 and H100 processors, which commanded 80% of the entire AI processor market in 2023; SK hynix is the sole supplier of HBM3 chips for these GPUs. SK hynix currently dominates the market with a first-mover advantage. It launched the first HBM chip in partnership with AMD in 2014 and the first HBM2 chip in 2015.

Figure 1 SK hynix currently dominates the HBM market with nearly 90% of the market share.

Last month, SK hynix made waves by announcing to start the mass production of the industry’s first HBM3e chip. So, is the HBM market and its intrinsic pairing with AI processors a case of winner-takes-all? Not really. Enter Samsung with a 12-layer HBM3e chip.

Samsung’s HBM surprise

Samsung’s crosstown memory rival SK hynix has been considered the unrivalled HBM champion since it unveiled the first HBM memory chip in 2014. It’s also known as the sole HBM supplier of AI kingpin Nvidia while Samsung has been widely reported to be lagging in HBM3e sample submission and validation.

Then came Nvidia’s four-day annual conference, GTC 2024, where the GPU supplier unveiled its H200 and B100 processors for AI applications. Samsung, known for its quiet determination, once more outpaced its rivals by displaying 12-layer HBM3e chips with 36 GB capacity and 1.28 TB/s bandwidth.

Figure 2 Samsung startled the market by announcing 12-layer HBM3e devices compared to 8-layer HBM3e chips from Micron and SK hynix.

Samsung’s HBM3e chips are currently going through a verification process at Nvidia, and CEO Jensen Huang’s note “Jensen Approved” next to Samsung’s 12-layer HBM3e device on display at GTC 2024 hints that the validation process is a done deal. South Korean media outlet Alpha Biz has reported that Samsung will begin supplying Nvidia with its 12-layer HBM3e chips as early as September 2024.

These HBM3e chips stack 12 DRAMs, each carrying 24-GB capacity, leading to a peak memory bandwidth of 1.28 TB/s, 50% higher than 8-layer HBM3e devices. Samsung also claims its 12-layer HBM3e device maintains the same height as the 8-layer HBM3e while offering 50% more capacity.

It’s important to note that SK hynix began supplying 8-layer HBM3e devices to Nvidia in March 2024 while its 12-layer devices, though displayed at GTC 2024, are reportedly encountering process issues. Likewise, Micron, the world’s third largest manufacturer of memory chips, following Samsung and SK hynix, announced the production of 8-layer HBM3e chips in February 2024.

Micron’s window of opportunity

Micron, seeing the popularity of HBM devices in AI applications, is also catching up with its Korean rivals. Market research firm TrendForce, which valued the HBM market approximately 8.4% of the overall DRAM industry in 2023, projects that this percentage could expand to 20.1% by the end of 2024.

Micron’s first HBM3e product stacks 8 DRAM layers, offering 24 GB capacity and 1.2 TB/s bandwidth. The Boise, Idaho-based memory supplier calls its HBM3e chip “HBM3 Gen2” and claims it consumes 30% less power than rival offerings.

Figure 3 Micron’s HBM3e chip has reportedly been qualified for pairing with Nvidia’s H200 Tensor Core GPU.

Besides technical merits like lower power consumption, market dynamics are helping the U.S. memory chip supplier to catch up with its Korean rivals Samsung and SK hynix. As noted by Anshel Sag, an analyst at Moor Insights & Strategy, SK hynix already having sold out its 2024 inventory could position rivals like Micron as a reliable second source.

It’s worth mentioning that Micron has already qualified as a primary HBM3e supplier for Nvidia’s H200 processors. The shipments of Micron’s 8-layer HBM3e chips are set begin in the second quarter of 2024. And like SK hynix, Micron claims to have sold all its HBM3e inventory for 2024.

HBM a market to watch

The HBM market will continue to remain competitive in 2024 and beyond. While HBM3e is positioning as the new mainstream memory device, both Samsung and SK hynix aim to mass produce HBM4 devices in 2026.

SK hynix is employing hybrid bonding technology to stack 16 layers of DRAMs and achive 48 GB capacity; compared to HBM3e chips, it’s expected to boost bandwidth by 40% and lower power consumption by 70%.

At the International Solid-State Circuits Conference (ISSCC 2024) held in San Francisco on February 18-21, where SK hynix showcased its 16-layer HBM devices, Samsung also demonstrated its HBM4 device boasting a bandwidth of 2 TB/s, a whopping 66% increase from HBM3e. The device also doubled the number of I/Os.

HBM is no longer the unsung hero of the AI revolution, and all eyes are on the uptake of this remarkable memory technology.

Related Content

googletag.cmd.push(function() { googletag.display('div-gpt-ad-inread'); });
googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post A sneak peek at HBM cold war between Samsung and SK hynix appeared first on EDN.

South Korea’s RFHIC invests in epiwafer supplier SweGaN

Semiconductor today - Пн, 04/15/2024 - 19:06
SweGaN AB of Linköping, Sweden has entered a strategic partnership with South Korea-based RFHIC Corp, which designs and manufactures GaN RF & microwave high-power semiconductor components and hybrid modules for applications in wireless communications, defense & aerospace, and RF Energy (industrial, scientific & medical). The new agreement encompasses an undisclosed equity investment from RFHIC. The two companies will focus on joint R&D and new product development...

Infineon receives ‘GaN Strategic Partner of the Year’ award from Chicony

Semiconductor today - Пн, 04/15/2024 - 18:56
Chicony Power Technology Co Ltd of New Taipei, Taiwan has announced the winners of its Annual Partner Awards, honoring Infineon Technologies AG of Munich, Germany as its 2023 ‘GaN Strategic Partner of the Year’...

Light + Building 2024: Fulminant innovation show provides a stage for sustainability and efficiency in buildings

ELE Times - Пн, 04/15/2024 - 13:58

The modern building is intelligent, connected and as a result saves energy. In combination with alternative energy sources and efficient lighting solutions, emissions in the building sector can be drastically reduced. This makes a significant contribution to achieving climate targets. 2,169 exhibitors presented the latest developments in building technology and trends in innovative lighting design at Light + Building in Frankfurt am Main from 3 to 8 March 2024. Over 151,000 visitors travelled to the world’s leading trade fair for lighting and building-services technology.

“The atmosphere at the exhibitors’ booths, in the halls and throughout the exhibition grounds was simply fantastic. We are extremely pleased that so many exhibitors and visitors, as well as our long-standing partners, have continued the success story of the world’s leading trade fair for lighting and building-services technology in 2024,” summarises Wolfgang Marzin, President and Chief Executive Officer of Messe Frankfurt. He adds: “With the switch to renewable energy sources, greater efficiency and sustainability in buildings, the industry has key goals on its agenda. That’s why they used the platform intensively, especially in the first few days, to present and discover innovations and drive forward key topics. After all, if we want to achieve the climate protection goals, the building sector is an essential milestone. It is unfortunate that the rail and air transport strikes have already affected Messe Frankfurt’s third leading international event since the beginning of the year.”

Buildings of tomorrow and inspiring lighting solutions

Key topics are the electrification and digitalisation of homes and buildings in order to reduce emissions and reuse raw materials. At Light + Building, the industry presented the digital and electrotechnical infrastructure for this and, on this basis, showcased solutions for dynamic power control, energy storage systems and applications for connected security. One growing area is the range of e-mobility and charging infrastructure as well as innovations and products for decentralised energy supply systems and components.

Light plays an important role in the architecture of tomorrow. At Light + Building 2024, 65 per cent of exhibitors belonged to this sector. They presented high-quality lighting solutions for indoor and outdoor areas as well as dynamic room concepts. Modern LED installations ensure contemporary efficiency and either blend harmoniously into the architecture or emphasise the design elements. Lighting is to provide maximum visual comfort in all living and working environments. Thanks to the materials used, Acoustic Lighting combines a pleasant lighting atmosphere with sound-absorbing functions. Sustainability plays an essential role in both the materials used and the manufacturing processes. Many manufacturers design luminaires in a way that the raw materials used can be recycled at the end of their useful life.

Light + Building 2024 in figures

The high-quality, extensive and international portfolio of lighting and building-services technology impressed the visitors. 95 per cent of them were extremely satisfied with what was on display and stated that they had achieved 93 per cent of their trade fair attendance targets. The most came to the innovation meeting point from Germany, China, Italy, the Netherlands, France, Switzerland, Belgium, Austria, the UK, Spain and Poland. They came from a total of 146 countries – including, for example, India, the USA, the United Arab Emirates, Australia, Brazil and Singapore. The degree of internationality was thus 51 per cent. The level of internationality among the 2,169 exhibitors was also high at 76 per cent.

Meeting place for the social media community

The social media community also found its home at Light + Building. On 3 and 4 March, the leading content creators in the lighting and building-services technology sector gathered for the Power Creator Days. In addition to live podcasts, expert talks and case studies, visitors had the chance to pedal for a good cause and work together towards a high energy target. A total of 1,510 minutes were cycled on the six fitness bikes. The sponsors will convert the result into a cash donation for the Leberecht Foundation, which Messe Frankfurt will double. The exact amount will be announced on social media further to Light + Building.

The next Light + Building will take place from 8 to 13 March 2026 in Frankfurt am Main.

Voices of the industry 02_191008_Alexander-Neuhaeuser_RO7A4153_Foto_ZVEHAlexander Neuhäuser, General Manager ZVEH (Central Association of the German Electrical and Information Technology Trades)

Alexander Neuhäuser, General Manager ZVEH, Central Association of the German Electrical and Information Technology Trades, says that “Light + Building demonstrates how sector coupling can succeed through the necessary connectivity. The electrical trades integrate photovoltaics, storage, electromobility and heat pumps. They show how the energy industry requirements for controllable consumption devices (SteuVE) can be met and thus take account of the current transformation process. The good atmosphere at this year’s Light + Building 2024 was also noticeable at the joint stand of the electrical trades, which was very busy on all days of the event. The traditional partners’ evening was also a complete success, bringing together the partners of the electrical trades and the industry leaders. We were particularly pleased that so many young people once again took the opportunity to visit the E-House and the workshop street and gain an impression of what is feasible with smart and intelligently connected building automation.”

Wolfgang Weber, CEO, ZVEI, Electro and Digital Industry Association, is of the opinion that, “In the context of climate goals and the economic situation of urgently creating more affordable living space in Germany, technologies are increasingly coming into focus. The exhibiting companies at Light + Building have impressively demonstrated how easily well-designed climate protection can even lead to greater economic efficiency in the operation of houses, buildings and entire neighbourhoods.

Wolfgang-Weber-Portraet-Quelle-ZVEI-Alexander-Grueber-scaledWolfgang Weber, CEO, ZVEI (Electro and Digital Industry Association)

This requires the right solutions, especially from the electrical and digital industry, such as heat pumps, controllable lighting, charging points and an energy management system. This is relevant – not just in Germany and Europe, but worldwide. Light + Building is the right place to present innovative, climate-friendly technologies and solutions and to engage in dialogue with trade visitors from Germany and abroad.”

The post Light + Building 2024: Fulminant innovation show provides a stage for sustainability and efficiency in buildings appeared first on ELE Times.

Q-Pixel debuts highest-resolution active-matrix color display

Semiconductor today - Пн, 04/15/2024 - 12:59
Micro-LED display startup Q-Pixel Inc of Los Angeles, CA, USA has achieved what it claims is the highest-resolution active-matrix color display: 3K x 1.5K resolution in a screen of ~1.1cm x 0.6cm...

Riber’s annual revenue grows 41% to €39.3m, driven by systems revenue almost doubling

Semiconductor today - Пн, 04/15/2024 - 12:58
For full-year 2023, molecular beam epitaxy (MBE) system maker Riber S.A. of Bezons, France has reported revenue of €39.3m, up 41% on 2022’s €27.8m...

Rare Soviet frequency standard clock (Ч7-3)

Reddit:Electronics - Сбт, 04/13/2024 - 20:33
Rare Soviet frequency standard clock (Ч7-3)

Managed to save this from the dump yesterday. The thing apperas to be extremely rare as there is no info on it even in Russian internet segment. No ICs inside, only transistors.

submitted by /u/AltCtrlGraphene
[link] [comments]

Weekly discussion, complaint, and rant thread

Reddit:Electronics - Сбт, 04/13/2024 - 18:00

Open to anything, including discussions, complaints, and rants.

Sub rules do not apply, so don't bother reporting incivility, off-topic, or spam.

Reddit-wide rules do apply.

To see the newest posts, sort the comments by "new" (instead of "best" or "top").

submitted by /u/AutoModerator
[link] [comments]

8-bit MCUs tout 15-W USB power delivery

EDN Network - Сбт, 04/13/2024 - 00:07

Microchip’s AVR DU 8-bit MCUs integrate a USB 2.0 full-speed interface that supports power delivery up to 15 W, enabling USB-C charging at up to 3 A at 5 V. According to the manufacturer, this capability, not commonly found in other USB microcontrollers in this class, allows embedded designers to implement USB functionality across a wide range of systems.

In addition to higher power delivery than previous devices, AVR DU microcontrollers also feature improved code protection. To defend against malicious attacks, the devices employ Microchip’s Program and Debug Interface Disable (PDID) function. When enabled, the PDID function locks out access to the programming/debugging interface and blocks unauthorized attempts to read, modify, or erase firmware.

To enable secure firmware updates, the MCUs provide read-while-write flash memory in combination with a secure bootloader. This allows designers to use the USB interface for in-field updates without disrupting product operation.

The AVR DU family of MCUs is suitable for a range of embedded applications, from fitness wearables and home appliances to agricultural and industrial applications. A virtual demonstration of the MCU’s USB bridge is available here.

AVR DU series product page

Microchip Technology 

Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.

googletag.cmd.push(function() { googletag.display('div-gpt-ad-native'); }); -->

The post 8-bit MCUs tout 15-W USB power delivery appeared first on EDN.

Сторінки

Subscribe to Кафедра Електронної Інженерії підбірка - Новини світу мікро- та наноелектроніки