-   Українською
-   In English
Новини світу мікро- та наноелектроніки
MCU optimizes satellite control and monitoring
The GR716B radiation-hardened microcontroller from Frontgrade Gaisler handles multiple tasks over extended periods in space. This energy-efficient MCU is well-suited for supervision, monitoring, and control in satellite applications, adapting to various space systems with a broad range of standard interfaces, architectural features, and integrated analog functions.
Powered by a LEON3 SPARC V8 processor running at up to 100 MHz, the GR716B ensures deterministic software execution with multiple non-intrusive buses, fixed interrupt latency, and a cache-less architecture. Two real-time accelerators offload demanding tasks from the LEON3 and have access to tightly coupled memory for instructions and data. The MCU also includes 192 KiB of on-chip RAM and fault-tolerant memory controllers for off-chip memory access.
The GR716B offers robust radiation resilience, with a total ionizing dose (TID) tolerance of up to 100 krads and single event latch-up (SEL) immunity of >118 MeV·cm²/mg. Its I/O interfaces include a SpaceWire router, Ethernet, MIL-STD-1553B, CAN, PacketWire, programmable PWM, SPI with SPI-for-Space protocols, UART, I2C, and GPIO. Integrated analog functions feature radiation-hardened cores such as DAC, ADC, comparator, voltage reference, PLL, and all active components for a crystal oscillator.
Engineering models of the GR716B MCU are now available to alpha customers for integration into new missions.
Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.
The post MCU optimizes satellite control and monitoring appeared first on EDN.
Thin micro speaker enables sleek designs
Sycamore, a full-range, all-silicon near-field micro speaker from xMEMs, is 1/7th the size and 1/3rd the thickness of conventional dynamic drivers. Coming in at just 8.41×9×1.13 mm and weighing only 150 mg, this tiny MEMS speaker delivers full-range sound while enabling thinner, lighter designs for open wireless stereo (OWS) earbuds, smartwatches, AR/VR headsets, and other mobile electronics.
Unlike the company’s Cypress micro speaker, designed for occluded in-ear ANC earbuds, Sycamore targets open-air listening devices. Its solid-state design and IP58 rating ensure durability and sweat resistance for active users.
With a first-order low-frequency roll-off, Sycamore matches the mid-bass performance of legacy drivers while extending sub-bass by up to 11 dB. It also extends high-frequency performance by up to 15 dB above 5 kHz, making it a strong near-field micro speaker or high-frequency tweeter alternative for laptops, automotive applications, and portable Bluetooth speakers.
xMEMS plans to sample the Sycamore micro speaker in Q1 2025, with mass production set for October 2025.
Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.
The post Thin micro speaker enables sleek designs appeared first on EDN.
Chipset simplifies DDR5 MRDIMM interfacing
Renesas is sampling a trio of interface ICs for second-generation DDR5 multiplexed rank dual in-line memory modules (MRDIMMs). This complete memory interface chipset includes the RRG50120 multiplexed registered clock driver (MRCD), RRG51020 multiplexed data buffer (MDB), and RRG53220 power management integrated circuit (PMIC).
Gen 2 DDR5 MRDIMMs address the growing memory bandwidth demands of artificial intelligence, high-performance computing, and other data center applications. They deliver operating speeds of up to 10,000 MT/s, with future iterations targeting 12,800 MT/s.
The second-generation RRG50120 MRCD buffers the command/address bus, chip selects, and clocks between the host controller and DRAMs in MRDIMMs. It reduces power consumption by 45% compared to the first generation, improving heat management in high-speed systems. The Gen 2 RRG51020 MDB buffers data between the host CPU and DRAMs. Both the MRCD and MDB support speeds up to 12.8 Gbps. Optimized for high-current, low-voltage operation, the RRG53220 PMIC provides reliable electrical-over-stress protection and enhanced power efficiency.
Production availability of the RRG50120 MRCD, RRG51020 MDB, and RRG53220 PMIC is expected in the first half of 2025. To learn more about Renesas DDR5 products, click here.
Find more datasheets on products like this one at Datasheets.com, searchable by category, part #, description, manufacturer, and more.
The post Chipset simplifies DDR5 MRDIMM interfacing appeared first on EDN.
Scrutinizing a camera flash transmitter
As I conceptually discussed last May, following up with a teardown nearly a year later (and earlier this year), master flash units mated to cameras’ hot shoes are often also capable of, whether via IR or various RF schemes, also controlling slave illumination devices located elsewhere in a studio or other picture-shooting location.
But what if you don’t want to restrict yourself from a lighting-setup standpoint to connecting at least one flash unit directly to your image-capture device for resultant full-frontal illumination of your subject? Extension cords can get you a foot or so away while retaining the full-featured physical tether, for example:
That said, an even more flexible approach mates the camera to a dedicated-function transmitter (also commonly referred to as a “trigger”), with all lighting sources in the setup controlled by it and subsequently acting as slaves. This approach is equally beneficial if you do desire full-frontal illumination of your subject but your main flash unit isn’t sufficiently “intelligent”, since such transmitters are typically camera-cognizant (thereby handling the “intelligence” themselves) and support “dumb” hot shoe and cable sync options to a close-proximity flash, too.
Today’s teardown victim, from Godox, is one such example. The means by which I came into possession of it is admittedly atypical. Reiterating what I wrote in my Godox V1 flash unit teardown from earlier this year:
As regular readers already know, “for parts only” discount-priced eBay postings, suggestive of devices that are (for one reason or another) no longer functional, are often fruitful teardown candidates as supplements to products that have died on me personally.
The patient this time is another example of this longstanding “dumpster diving” tendency…or at least I thought it was going to be. Back in March, well-known used imaging equipment retailer KEH held one of its periodic “inventory reduction” sales, this one offering 15% off a subset of its warehouse stock. One of the things that caught my eye was a “Godox X1T-F TTL Wireless Flash Trigger Transmitter for Fujifilm” in “as-is” condition for $3.65 before discount, $3.10 after:
“1” in the product code means first-generation, “T” stands for “transmitter” (or “trigger”), “F” means that it’s intended for use with Fujifilm cameras…and “as-is”, paraphrasing KEH, basically means that best-case it’s cosmetically beat up and worst-case it doesn’t work at all. And indeed, when it arrived, that’s what the sticker attached to the bag containing the transmitter indicated:
What was inside the bag, however, was something much better, a second-generation Godox X2T-F in pristine cosmetic condition (the Canon version of the X2T is shown in the following “stock” photo):
seemingly fully functional, to boot:
I don’t own any Fujifilm cameras, which wasn’t a problem given my original teardown-only plan for the as-is X1T device, and which also precludes me from definitively determining this X2T’s functional-or-not status. However, given that it seems to be fine, I’m going to do my utmost to do no permanent damage to it during my my disassembly, so that I can subsequently put it back together and donation-pass it on, where it’ll hopefully find good use for some time to come. To wit, I’ll restrain myself from any “extreme” dissection that might be permanently maiming.
To begin, here are some overview shots, as usual accompanied by a 0.75″ (19.1 mm) diameter U.S. penny for size comparison purposes. Front: in the upper left is the autofocus-assist lamp:
Right side: the USB-C connector is used for firmware updates, and the 3.5-mm sync jack can be settings-configured either as an input (as a transmitter-triggering alternative to the “intelligent” hot shoe at the bottom) or an output (as a tethered alternative to alternatively firing a “slave” flash device either wirelessly or via the “dumb” hot shoe at the top):
Back:
Left side: the switch on the left is for overall unit power control, while the one on the right enables or disables the AF-assist lamp:
Top: note first the “dumb” hot shoe to, as mentioned earlier, control a separate “slave” flash unit. Also note the Bluetooth logo; as with the earlier-dissected V1 flash unit, this transmitter not only controls other Godox (or rebranded Adorama) equipment via the proprietary 2.4 GHz wireless X protocol but also optionally supports itself being configured and controlled by a Bluetooth-tethered smartphone or tablet in conjunction with a Godox (or Adorama) app:
And finally, the bottom, with its comparatively “intelligent” hot shoe for mating with a (Fujifilm, in this particular case) camera:
Time to dive in. In prior pictures, you may have already noticed three (now removed) screws’ visible heads:
one at the bottom:
and one on each side:
Extracting them unfortunately didn’t get me very far, though:
And a scrape-away of the left-side QC sticker didn’t reveal any more screw heads underneath:
so next, I looked inside the underside battery compartment:
Ah yes, there we are. Two more screw heads:
That’s more like it:
First, here’s a closeup of the left half of the previous photo, revealing the inside (and underside) of the top half of the device:
And, jumping ahead in time, another perspective after disconnecting the two-wire tether between the “dumb” hot shoe and the system PCB that controls it (the lens in front of the AF-assist beam also detached from the device bottom-half in the process):
About that two-wire tether: remember my earlier discussed differentiation between “smart” and “dumb” hot shoes? I’ll confess at this point that I sorted this all out retroactively, after initially being momentarily baffled as to why there were only two wires (switched power and ground) coming out of the topside hot shoe…
A brief rewind-in-time now to the right half of the earlier overview shot, first still tethered:
And now standalone:
Along with three side-view perspectives:
Unsurprisingly, there’s a lot of component commonality between this design and that of the previously detailed Godox V1 flash. They’re both based on the same main system controller, for example, the APM32F072VBT6 (PDF), from a Chinese company called Geehy Semiconductor, integrating an Arm Cortex-M0+ running at 48 MHz along with 128 Kbytes of flash memory and 16 Kbytes of RAM. It’s in the upper left corner of the PCB, adorned with a pink ink dot, if you haven’t already noticed it (but given its comparative size, you probably already did).
You probably also already noticed the two identical-looking PCB-embedded antennae at the bottom. Above the one to the right is the same multi-component (and more general PCB) layout as that found in the V1: Texas Instruments’ CC2500 low-power 2.4 GHz RF transceiver and TI’s CC2592 front-end RF IC, so per proximity I’m guessing that this one handles Bluetooth connectivity. By the process of elimination, then, I’ll also hazard a deduction that the other antenna, to its left, implements Godox’ X wireless protocol in conjunction with whatever circuitry is inside the silver module with which it shares a common mini-PCB.
And did you also notice the three additional screw heads? You know what comes next, right?
Disconnect one more two-wire harness, this one going to the AF-assist beam subsystem:
Push through the case openings one side’s worth of battery terminals:
(the other side’s terminals are permanently attached the case, not connected to the PCB):
And voila:
Here’s an overview of the now-exposed main PCB backside, with battery terminals in the upper left, the two aforementioned left-side switches at bottom left, the USB-C and sync connectors at bottom right and ribbon cables (which, as previously discussed, along with the one connected to the other side of the main PCB, I’m not going to chance disconnecting) along the lower edge and leading elsewhere:
We’re now looking toward the inside of the bottom of the device, where both of those thinner ribbon cables end up. At left is the underside of the “smart” hot shoe, while at right is the control dial you may have noticed in earlier overview shots:
Wrapping things up, here’s the backside of the device, mated to ribbon cables for the display (the wider one at left) and control buttons (the narrower one at right):
And now, first taking a deep breath for calming confidence, I retraced my prior disassembly steps in reverse. Aside from a brief moment of panic when I thought I’d lost a screw (which ended up just being stuck in the recesses of the matching-color case), the process went smoothly. And, after taking another deep breath, popping two AAs in and flipping the power switch on, this is what I saw:
I seem to have successfully resurrected it, again to the limits of my no-Fujitsu-camera testing abilities. Yay! Sound off with your thoughts in the comments.
—Brian Dipert is the Editor-in-Chief of the Edge AI and Vision Alliance, and a Senior Analyst at BDTI and Editor-in-Chief of InsideDSP, the company’s online newsletter.
Related Content
- Multi-source vs proprietary: more “illuminating” case studies
- The Godox V1 camera flash: Well-“rounded” with multiple-identity panache
- Putting an APC UPS out of its (and my) misery
- Disassembling the Echo Studio, Amazon’s Apple HomePod foe
The post Scrutinizing a camera flash transmitter appeared first on EDN.
GlobalFoundries’ $1.5bn US CHIPS Act funding confirmed by Department of Commerce
US Geological Survey reckons China ban on gallium and germanium exports could cost $3.4bn in US GDP
US DOE announces $10m funding for Critical Materials Innovation Hub
Dependable power distribution with eFuses: Infineon launches PROFET Wire Guard with integrated I²t wire protection
Modern, decentralized, and zonal power distribution architectures require dependable solutions. With PROFET Wire Guard, Infineon Technologies AG provides developers with advanced wire protection for modern power distribution. Compared to conventional fuses, the product family can emulate the stress characteristics of the wires much more accurately with an integrated and precise I²t wire protection curve, which can be selected from six implemented curves depending on the application requirements. Combined with other features, the integrated I²t wire protection accuracy enables wire harness optimization when replacing mechanical relays and fuses.
The five PROFET Wire Guard devices come in the proven TSDSO-14 and TSDSO-24 packages. They offer full pin-to-pin compatibility within the family and high compatibility with PROFET +2 12V devices and are targeting currents of up to 27 A. To expand the current capabilities up to 36A, the product line-up will be further extended with an additional device coming in Q4 2025. The devices have a capacitive load switching (CLS) mode implemented to charge capacitive loads. An adjustable overcurrent detection threshold supports fast fault isolation from the power supply. The integrated automatic idle mode reduces current consumption during parking to typically 50 µA, while the output stage remains fully switched on. Built-in sequential diagnosis provides accurate application data across five addresses on a single pin, enabling application integrity testing for functional safety requirements and further wire harness optimization during facelifts based on the analysis of the wire protection status during vehicle operation. The devices have been developed and are released as ISO 26262:2018 Safety Element out of context for safety requirements up to ASIL D.
To support the design-in process, the product family is integrated into the Infineon Automotive Power Explorer, which is available in the Infineon Developer Center. This simulation tool supports, for example, the evaluation of the system protection capability of PROFET Wire Guard devices with a given wire and load profile. It also calculates the correct resistance values for the adjustable overcurrent detection threshold as well as the selection of the integrated I²t wire protection curves. The tool is also capable to calculate parameters like kILIS accuracy or power dissipation for the whole product family.
The post Dependable power distribution with eFuses: Infineon launches PROFET Wire Guard with integrated I²t wire protection appeared first on ELE Times.
Chips JU to fund new European pilot line for Advanced Photonic Integrated Circuits
ams OSRAM launches Gen 3 OSLON Black Flat S surface-mount LEDs for automotive forward lighting
Enhanced performance: Panasonic Industry releases advanced OS-CON high-voltage capacitor line extension
New SXV, SXE, and SVPG series deliver superior durability, low ESR, high ripple current, and increased capacitance, setting a new standard for industrial power supply applications.
Panasonic Industry Europe announces the expansion of its renowned OS-CON aluminum polymer solid capacitors, introducing the latest members of the product lineup: the SXV, SXE, and SVPG series. These new capacitor families are designed for surface mount and radial lead applications, offering remarkable performance improvements that meet the evolving needs of industrial applications.
SXV and SXE Series: Enhanced Performance for High-Density Mounting
The OS-CON SXV (surface mount type) and SXE (radial lead type) series capacitors are engineered to deliver superior durability and efficiency, featuring remarkable equivalent series resistance (ESR) even at low temperatures. Both series boast a high-temperature endurance of 1,000 hours at 125°C and operate within a wide voltage range of 63V to 100V. With enhancements to the aluminum foil, these capacitors offer a capacitance increase of up to 20% compared to competitors in the conductive polymer aluminum solid capacitor category. This advancement enables improved functionality and miniaturization, making them ideal for high-density mounting in power supplies, solar inverters, measuring machines, servers, and base stations.
SVPG Series: Reliability and Low ESR for High Ripple Current Applications
Complementing the SXV and SXE series, the OS-CON SVPG series introduces a line extension available in 20V and 25V ratings, designed for long life with an endurance of 5,000 hours at 105°C. With the extended voltage range, it is an ideal capacitor for smoothing 12-15V power lines that require high ripple current. The SVPG series is specifically formulated to provide low ESR and high ripple current handling, achieving an average ripple current increase of 1.37 times compared to competitors. This makes the SVPG series an excellent choice for power supply circuits that require reliability under high ripple conditions.
The SVPG series is suitable for a variety of demanding applications, including industrial power supplies, AI accelerators, industrial automation, and data centers.
All new capacitors in the OS-CON lineup are halogen-free and RoHS compliant, ensuring they meet the highest standards for safety and environmental responsibility.
The post Enhanced performance: Panasonic Industry releases advanced OS-CON high-voltage capacitor line extension appeared first on ELE Times.
Infineon and Quantinuum announce partnership to accelerate quantum computing towards meaningful real-world applications
- Companies aim at developing powerful ion traps for Quantinuum’s future generations of quantum computers.
- Infineon provides expertise in process development, fabrication, and quantum processing unit (QPU) technology
- Partnership to drive progress in fields such as generative chemistry, material science, and artificial intelligence.
Infineon Technologies AG, a global leader in semiconductor solutions, and Quantinuum, a global leader in integrated, full-stack quantum computing, have announced a strategic partnership to develop the future generation of ion traps. This partnership will drive the acceleration of quantum computing and enable progress in fields such as generative chemistry, material science, and artificial intelligence.
“We are thrilled to partner with Quantinuum, a leader in quantum computing, to push the boundaries of quantum computing and generate larger, more powerful machines that solve meaningful real-life problems,” said Richard Kuncic, Senior Vice President and General Manager Power Systems at Infineon Technologies. “This collaboration brings together Infineon’s state-of-the-art knowledge in process development, fabrication, and quantum processing unit (QPU) technology with Quantinuum’s cutting-edge ion-trap design expertise and experience with operating high-performance commercial quantum computers.”
Infineon innovates with a dedicated team to make their trapped-ion quantum processing units (QPUs) the heart of the leading quantum computers. The company has invested in this field since 2017, applying its expertise in high-volume processing technologies and developing technologies, like integrated photonics and control electronics, to enable their partners to scale the qubit count of their machines.
In Quantinuum’s hardware approach, charged atoms are trapped with electromagnetic fields so they can be manipulated and encoded with information using microwave signals and lasers. This design has distinct advantages over other quantum hardware, including higher fidelities and longer coherence times.
This collaboration builds on today’s leading performance of Quantinuum’s trapped-ion quantum computers, which currently hold the world records in key performance benchmarks such as 2-qubit gate fidelity, quantum volume and cross-entropy benchmark fidelity. To deliver even better fidelity at greater scale and achieve commercial advantage, larger and more sophisticated ion traps are needed. Engineers from the two companies have been working together for more than a year and will intensify their efforts under the current partnership to develop powerful ion traps for Quantinuum’s next-generation quantum computers.
“At Quantinuum, our mission is to accelerate useful quantum computing. We have announced a roadmap to reach universal fault-tolerance in 2029. Our partnership with Infineon is key to our delivering on this commitment,“ said Dr. Rajeeb Hazra, President and CEO of Quantinuum.
The post Infineon and Quantinuum announce partnership to accelerate quantum computing towards meaningful real-world applications appeared first on ELE Times.
Texas Instruments presents automotive technology expertise and innovations at India Automotive Seminar 2024
Texas Instruments (TI) has announced its India Automotive Seminar 2024, where automotive designers will learn about the latest innovations and emerging automotive trends. At the seminar, taking place on November 19 in Pune and November 22 in Bangalore, attendees will meet with TI experts in sessions on how to use TI’s innovative technology to address critical areas in automotive applications, such as battery management system (BMS), car access and infotainment.
“To address ever-evolving challenges, automakers are looking to semiconductor advancements from reliable suppliers,” said Elizabeth Jansen, sales director, Texas Instruments India. “In areas such as intelligent EV powertrains and software-defined vehicles, the insights and technologies at TI’s India Automotive Seminar will help drive automotive forward alongside automakers. We’re building reliable, cost-efficient, and intelligent technologies that are at the core of safer and smarter vehicles.”
In addition to educational sessions, attendees will see live demonstrations of TI’s analog and embedded processing portfolio and design resources enabling hybrid and electric powertrain systems, body electronics and lighting solutions, and infotainment and cluster solutions.
Demonstrations at India Automotive Seminar 2024
- Vehicle electrification: For manufacturers who are developing smarter, safer electric vehicle (EV) systems, TI will showcase devices that help meet functional safety standards in BMS and smarter EV powertrains.
o 48V BMS reference design: Advanced BMS helps overcome some of the most critical barriers to widespread adoption: driving range, safety, performance, reliability, and cost.
o Traction inverter 5KW: Advances in traction inverters, enabled by TI’s microcontrollers with real-time control capabilities and isolated gate drivers, are pushing expectations of EV performance even further. Better switching speeds lead directly to improvements in reliability, performance, weight, and power density.
o New TI programmable logic device portfolio: Programmable logic devices can integrate up to 40 combinational and sequential logic and analog functions into one chip, reducing board size as much as 94% — and lowering system costs — compared to discrete logic implementations.
- Body electronics and lighting: TI’s products address common challenges such as load driving, condition diagnostics, and fault detection and optimize automotive light-emitting diode (LED) lighting systems. Designers can use TI reference designs to quickly develop door locks; window lifts; seat heaters; heating, ventilation and air conditioning lamps; and more.
o Radar kick-to-open demo: Demonstration of TI mmWave radar sensors which enable automakers to integrate more sensing into any level of vehicle, helping to make automobiles safer.
o OPT4001-Q1 light-to-digital sensor: Designed for systems that require light-level detection to enhance user experience, this sensor often can be used to replace low-accuracy photodiodes, photoresistors and other ambient light sensors to improve human eye matching and near-infrared rejection.
- Infotainment and cluster: TI’s broad analog and embedded processing portfolio enables applications such as car audio, navigation systems, power supplies, as well as in-car and personal entertainment.
o Bulk acoustic wave (BAW) oscillators: The industry’s first BAW-based fixed-frequency oscillator offers jitter performance lower than 100fs, stability across 10 years of aging and vibration, and low current consumption in industry-standard packages.
o Dynamic ground projection with DLP® technology: Enable dynamic content to be displayed anywhere around the vehicle with DLP3021-Q1 and DLP2021-Q1 digital micromirror devices. These DLP products are automotive-qualified, compact and reprogrammable, enabling a system that can display an infinite number of full-color images and videos for vehicle personalization, customization and styling.
o Ultrasonic lens cleaning: TI’s ultrasonic lens cleaning chipset automatically detects when there is an obstruction on the lens and activates a cleaning cycle to remove contaminants — reducing the need for human intervention and maintenance, even in complex integrated systems.
o Digital cluster: The entry-level automotive-grade AM62 Arm®-based processors address automotive applications like driver monitoring systems and entry-level digital clusters.
o Front Camera: AM62 processors are built for a set of cost-sensitive automotive applications including driver and in-cabin monitoring systems, and the next generation of eMirror systems.
The post Texas Instruments presents automotive technology expertise and innovations at India Automotive Seminar 2024 appeared first on ELE Times.
Keysight Introduces Electronic Design Automation Software Suite Amplifying Designer Productivity with AI
- Reduces Radio Frequency (RF) device modeling time from days to hours
- Automated Python workflows streamline design processes
- Accelerates predictive design of chiplet interconnects
Keysight Technologies, Inc. has introduced its new Electronic Design Automation (EDA) software portfolio to transform how engineers address the demands of next-generation technologies. As the electronics industry races to develop advanced solutions for 5G/6G and data center applications, Keysight’s suite of EDA tools leverages AI, machine learning (ML), and Python integrations to dramatically reduce design time for complex RF and chiplet products.
Keysight’s EDA 2025 software addresses critical challenges in the development lifecycle by enhancing data manipulation, integration, and control of best-in-class simulators, allowing engineers to build efficient workflows seamlessly across multiple tools. AI-enhanced workflows and high-performance computing further reduce the time-to-insight, enabling engineers to move from simulation to verification and compliance with greater confidence. For simulating fast digital interconnects, the software is equipped with end-to-end component models and measurements that conform to digital standards, providing an efficient and high-accuracy digital twin for complex digital electronic design challenges.
Core benefits of the EDA 2025 software portfolio include:
- RF Circuit Design: Accelerate RF design cycles through open, automatable workflows featuring Python integration and multi-domain simulation. Additionally, the Python toolkit enables engineers to quickly consolidate measured load pull data from various files and formats into a single, cohesive dataset to train fast AI/ML models.
- High-speed Digital Design: Create precise digital twins for complex standard-specific SerDes designs, including Universal Chiplet Interconnect Express (UCIe) chiplets, memory, USB, and PCIe, with the Advanced Design System (ADS) 2025 release.
- Device Modeling and Characterization: Reduce model re-centring time by 10X through AI/ML capabilities in the IC-CAP 2025 release, while Python integrations streamline and automate the modelling process.
Nilesh Kamdar, EDA Design & Verification General Manager at Keysight, said, “AI is transforming how engineers approach complex design challenges. Automating traditionally time-intensive tasks enables engineers to focus on innovation rather than repetitive refinements, resulting in real productivity gains. The foundation for the practical application of AI and ML is first having an open, interoperable workflow and then providing turn-key solutions tuned for specific applications. It’s a fascinating time, and AI and ML will undoubtedly be a huge driver of design innovation in the future.”
Stephen Slater, Director of Product Management at Keysight, said, “With this release, engineers can easily import data from measurements or swept simulations to train neural network models, which then execute very quickly in subsequent simulations. This unlocks new possibilities for abstracting and co-optimizing large parts of the RF design together, dramatically accelerating the development process.”
The post Keysight Introduces Electronic Design Automation Software Suite Amplifying Designer Productivity with AI appeared first on ELE Times.
Renesas Introduces Industry’s First Complete Memory Interface Chipset Solutions for Second-Generation DDR5 Server MRDIMMs
New Multiplexed Registered Clock Driver, Multiplexed Data Buffer and PMIC Enable Next-Generation MRDIMM Speeds up to 12,800 Mega Transfers per Second for AI and High-Performance Compute Applications
The post Renesas Introduces Industry’s First Complete Memory Interface Chipset Solutions for Second-Generation DDR5 Server MRDIMMs appeared first on ELE Times.
Driving the Future of Electric Mobility and Industrial Efficiency: Insights into STMicroelectronics’ 4th Generation SiC MOSFET Technology
STMicroelectronics has introduced its fourth-generation STPOWER silicon carbide (SiC) MOSFET technology, delivering breakthroughs in power efficiency, density, and robustness for automotive and industrial applications. Designed to optimize EV traction inverters, the technology enhances energy efficiency and performance in both 400V and 800V platforms, driving the adoption of more affordable and sustainable electric vehicles. Additionally, it addresses critical needs in renewable energy, industrial motor drives, and data centers, reflecting ST’s commitment to advancing electric mobility and industrial efficiency through innovation and a vertically integrated manufacturing strategy.
Gianfranco Dimarco, Chief of Staff and Marketing Communication Manager Power & Discrete at STMicroelectronics
Rashi Bajpai, Sub-Editor at ELE Times, engaged with Gianfranco Dimarco, Chief of Staff and Marketing Communication Manager Power & Discrete at STMicroelectronics, to explore emerging SiC MOSFET technology.
ELE Times: What are the key advantages of the new 750V and 1200V SiC MOSFET devices for mid-size and compact EVs, and how will they contribute to making electric vehicles more affordable and accessible?
Gianfranco Dimarco: STMicroelectronics’ new 750V and 1200V SiC MOSFET devices offer significant advancements for mid-size and compact electric vehicles, enhancing efficiency, reducing size and weight, increasing range, and enabling faster charging. The improved efficiency stems from SiC MOSFETs’ ability to minimize switching losses, significantly reducing energy waste during driving. Additionally, the compact and lightweight design of these components optimizes space utilization, boosting vehicle performance and extending the distance covered on a single charge. Their higher power capacity also facilitates faster charging, making electric vehicles more practical for daily use. Together, these innovations lower production costs, accelerating the adoption of green technologies in the automotive industry.
ELE Times: Beyond EV traction inverters, how does the Generation 4 SiC technology enhance the performance of high-power industrial applications, such as solar inverters, energy storage systems, and data center power supply units?
Gianfranco Dimarco: STMicroelectronics’ Generation 4 SiC technology not only advances EV traction inverters but also plays a crucial role in enhancing high-power industrial applications like solar inverters, energy storage systems, and data center power supply units. Solar inverters benefit from increased efficiency and higher power density, resulting in better energy conversion and more reliable solar power systems.
Energy storage systems also leverage SiC devices for greater durability and efficiency, making them ideal for long-term use, particularly in grid balancing and hybrid power systems with renewables. In data centers, SiC technology ensures stable, efficient power delivery, preventing disruptions in critical operations. These advancements underscore the growing importance of SiC technology in modern high-power industrial applications, significantly improving both efficiency and reliability across various sectors.
ELE Times: With STMicroelectronics’ vertically integrated manufacturing strategy, how does the company plan to ensure a resilient supply chain for SiC components to meet growing global demand, especially for automotive and industrial markets?
Gianfranco Dimarco: STMicroelectronics ensures a resilient supply chain for SiC components through its vertically integrated manufacturing strategy. The company is investing in facilities like the Silicon Carbide Campus in Catania, a fully vertically integrated SiC substrate manufacturing facility, which is expected to start production in 2026. This approach allows STMicroelectronics to control the entire production process, from raw materials to finished components, ensuring consistent quality and supply. Additionally, strategic investments to start the migration from 150mm to 200mm for SiC, further enhance manufacturing efficiencies and scalability. By vertically integrating and expanding its manufacturing footprint, STMicroelectronics is well-positioned to meet the growing global demand for SiC components, especially in the automotive and industrial markets.
ELE Times: Can you provide specific performance metrics or benchmarks that demonstrate the improvements in efficiency, power density, and robustness of the Generation 4 SiC MOSFETs compared to previous generations or silicon-based alternatives?
Gianfranco Dimarco: The 4th generation SiC MOSFETs feature several key advancements over the previous generation:
- Faster Switching Speeds: this results in lower switching losses, which is crucial for high-frequency applications, enabling more compact and efficient power converters.
- Lower On-Resistance (RDS(on)): significantly reduced on-resistance minimizes conduction losses and enhances overall system efficiency.
- Enhanced Robustness: improved performance in Dynamic Reverse Bias (DRB) conditions, exceeding the AQG324 automotive standard, ensuring reliable operation under harsh conditions.
- Smaller Die Size: the average die size of Generation 4 devices is 12-15% smaller than that of Generation 3, considering an RDS(on) at 25 degrees Celsius. This allows for more compact power converter designs, saving valuable space and reducing system costs.
ELE Times: How does STMicroelectronics’ vertically integrated manufacturing strategy contribute to its sustainability goals, and what specific initiatives are in place to ensure environmentally friendly production processes for these new SiC devices?
Gianfranco Dimarco: Through our vertically integrated manufacturing strategy we maintain full control over the entire production chain, from raw materials to finished products, and all initiatives are aligned with our sustainability strategy and our sustainable manufacturing commitment, in terms of energy consumption and greenhouse gas emissions, air, and water quality.
All these initiatives. ST Sustainability Report 2024
ELE Times: What can you share about the timeline and expected features of the forthcoming fifth-generation SiC power devices? How does the planned radical innovation differ from current technologies in terms of performance and application?
Gianfranco Dimarco: The main goals for the 5th generation of SiC MOSFET include achieving higher power density, further reducing on-resistance (RDS(on)), and improving thermal performance. These advancements aim to meet the increasing demands of high-power applications in automotive, industrial, and renewable energy sectors. We will share more details on Gen5 and the planned radical new technology at the appropriate time.
ELE Times: Which leading EV manufacturers are currently collaborating with STMicroelectronics to implement the Generation 4 SiC technology into their vehicles, and what feedback have they provided regarding the anticipated performance improvements?
Gianfranco Dimarco: Leading EV manufacturers and Tier 1s are engaged with ST to integrate Generation 4 SiC technology into their vehicles and powertrain solutions. We will share more details on our customers at the appropriate time.
The post Driving the Future of Electric Mobility and Industrial Efficiency: Insights into STMicroelectronics’ 4th Generation SiC MOSFET Technology appeared first on ELE Times.
After near a year, it have grown quite a bit.
From just one meter, variable transformer and oscilloscope, to full bench with wave generator, self made capacitor bank, "universal" counter, and all types of Unitra Nixie Multimeters. All from 70's and 80's. Even the camera is from that years and still works great.
[link] [comments]
ASMPT’s AMICRA NANO die and flip-chip bonder targets co-packaged optics
Old ENI CD V-700 6b upgraded to a scintillator detector
This modification kit, paired with a Mk.1 scintillation probe has given my old CDV 700 which previously was not functioning due the high voltage circuit issue new life. I thought about repairing it, but then thinking about the cost and time involved in that an upgrade sounded like the best option, and it makes the unit way more sensitive to gamma radiation than the old Geiger counter was. The fact that it’s Arduino based also allows for further tweaking. It’s an understatement to say that I am quite happy with the unit, I’m actually very excited about it. It works extremely well and Nick at RadView has been very helpful throughout the process of upgrading my CD V-700 answering questions that I had on his discord support forum. I’m not receiving any compensation I am just a customer that wants to see him succeed at making innovative, useful radiation detection products. He makes other things as well including the alpha hound. Check out his website below. I also made a short video of my modification.
[link] [comments]
A holiday shopping guide for engineers: 2024 edition
As of this year, EDN has consecutively published (intentionally ahead of Black Friday, by the way, if you hadn’t already deduced that non-coincidence) my odes to holiday-excused consumerism for more than a half-decade straight, nearing ten editions in total. Here are the 2019, 2020, 2021, 2022 and 2023 versions; I skipped a few years between 2014 and its successors. As in the past, I’ve included up-front links to the prior-year versions because I’ve done my best here to not reiterate any past category recommendations; the stuff I’ve previously suggested largely remains valid, after all. That said, it gets harder and harder each year not to repeat myself!
Without any further ado, and as usual ordered solely in the order in which they initially came out of my cranium…
A portable soldering ironBeing tethered in one place, or at best able to roam only a short distance from a power outlet, is a pet peeve of mine. It’s why, for example, I barely ever use a desktop computer anymore; not only are laptops and the like performance-adequate for most tasks nowadays, they also run for hours on batteries (no matter that mine’s still most times plugged into a wall outlet). It’s why I long ago replaced a legacy AC “weed whacker” with a battery-operated successor, accompanied by a suite of rechargeable lithium cells (and chargers) that also work with other portable tools.
Similarly, I’d sometimes prefer to take my soldering iron to where I need to use it versus always needing to drag whatever widget needs soldering down to my workbench and its AC outlet-fed traditional soldering iron set. That’s where the new FixHub |Power Series from my long-time buddies at iFixit comes in. The baseline is the $79.99 USB-C PD-based Smart Soldering Iron:
Up to 100 W of power (a 35-W minimum power source is necessary). Heats up in around 5 seconds. An illuminated ring for heat indication, along with safety features like auto standby snf fall protection. Interchangeable soldering tips and a factory-preset default tip temperature of 350°C (660°F), subsequently user-adjustable between 100°C and 420°C. How, you might ask, since there’s no temperature dial shown in the picture? One setting-customization option is a Web Interface (currently not supporting Mozilla Firefox, alas, I’ve just learned), believe it or not.
The other option, which also neatly addresses the “what about that portability you were touting earlier” query some of you might be having right now, is a smartphone-sized 55 watt-hour portable battery-plus-control box, which iFixit optionally bundles with the soldering iron to come up with the $249.95 Portable Soldering Station. It delivers an estimated 8-hour runtime between charges and provides a second USB-C PD output for (among other things) devices such as what I’ll talk about next:
Inexpensive lab equipmentHow’s that saying go: champagne taste on a beer budget? Or, if you prefer a visual definition:
That’s me, at least some of the time, and with some things (cameras aside, for example, although in self-defense here, pretty much everything photo-related I buy is already gently used). Which explains, in part, my burgeoning fascination with low-priced lab equipment. Another key motivation is to see, as time goes on and bill-of-materials cost reductions combine with customer demand increases, just how much (measured in both feature-set quantity and per-feature quality) I can get at a particular price point. Kinda like solar panel trends, I suppose…
Anyway, here are a few of my purchase examples for your consideration. First up is Jesverty’s WPS-3005 0-30 V and 0-5 A adjustable switching DC regulated bench power supply (other options with different output voltage and current ranges and case and display colors are also available), which I bought on sale at Amazon in October 2022 for $22.49:
Then there was the FNIRSI DSO-TC3, a 3-in-1 digital oscilloscope, electronic component tester, and function signal generator, the advanced (translation: more test probes included) version of which I snagged back in May of this year from Banggood for $39.99:
Serious testing equipment? Are you serious? But hey, the scope’s 10 MS/s sampling rate and 500-kHz bandwidth are nothing to sneeze at. It integrates a 2.4” color TFT display. Signal waveform generator options include sine, square, pulse stroke, triangle, ramp and DC. The DSO-TC3’s transistor and other component testing capabilities are notable, especially considering the price tag. A bunch of other available device functional modes are also listed on the product page, including temperature and humidity sensor measurement support. To my earlier point about roaming to where the (testing and measurement, in this case) “action” is versus forcing relocation to the gear-tethered workbench, it’s powered by an embedded lithium battery which, yes, can be recharged by (among other sources) the second USB-C PD port on the iFixit FixHub |Power box, as I foreshadowed earlier. And did I mention that it cost me less than $40?
Snazzy Raspberry Pi peripheralsLast year, I covered the recently introduced Raspberry Pi 5, which is now available in an entry-level $50 variant with 2 GBytes of RAM in addition to the originally introduced 4 GByte and 8 GByte flavors (two example of the latter which I own). This year, I’d like to focus on a few “RasPi” peripherals I’ve also recently acquired (and in another case, still have on my wish list). Focusing first on HAT+ add-in cards, the Raspberry Pi Foundation belatedly finally rolled out its own M.2 board, a while after third-party partners had done so. Unlike some of those others, however, it can be fitted to a Raspberry Pi 5 with the Raspberry Pi Active Cooler also in place…which is nice.
It also, unlike some third-party counterparts, and quoting from the product page, “is autodetected by the latest Raspberry Pi software/firmware.” This is the key reason why I always tend to go for “official” peripherals versus third-party alternatives, no matter how tempted I might be by those others’ specs. Do a bit of research, for example, into some third-party camera modules whose drivers don’t keep pace with base board firmware and O/S updates, inevitably ending up prematurely dropped from their suppliers’ support lists, and you’ll see what I mean.
Speaking of impressive specs, while the M.2 HAT+ board’s support for “fast (up to 500 MB/s) data transfer to and from NVMe drives” might sound impressive, realistically the Raspberry Pi 5’s microSD interface is plenty speedy enough for pretty much any current application; the biggest benefit to the M.2 alternative might be as a (cost-effective) high-capacity storage option. But note, too, the “and other PCIe accessories” qualifier in the originally published version of that earlier quote. What might those “other PCIe accessories” be, you ask? They include, for example, Hailo’s M.2 2242 module based on the Hailo-8L deep learning inference processor, which Raspberry PI bundles with the M.2 HAT+ as the $70 Raspberry Pi AI Kit:
Speaking of camera modules, what’s new in the Raspberry Pi Foundation’s stable? Well, there’s…
- A version of the Camera Module 2 absent the IR filter
- The HQ Camera, which bumps up the resolution to 12.3 Mpixels and, although absent a lens of its own (therefore absent the word “Module” in the product name), supports both C/CS and M12 mount interchangeable lenses
- The Global Shutter Camera, with “only” 1.6 Mpixel resolution but which “can capture rapid motion without introducing artifacts typical of rolling shutter cameras” and is therefore “Ideal for fast motion photography and machine vision applications” (again, there’s no integrated lens, therefore no “Module” in the product name, but a C/CS interchangeable lens mount is included)
- The Camera Module 3 series, which adds autofocus support
- And last but not least (and, in fact, most recently) the $70 AI Camera, based on Sony’s IMX500 Intelligent Vision Sensor and also integrating a Raspberry Pi RP2040 IC for neural network firmware management.
I’ve conceptually discussed power banks before:
And even tore one down a few years back:
But unless I’m mistaken (always a possibility), I don’t think they’ve yet made one of my holiday gift lists. Let’s rectify that oversight, because they’re handy, powerful, totable and increasingly cost-effective devices. They sometimes integrate Qi wireless charging pads, as a supplement to their various wired power outputs, which some power banks further augment via MagSafe (Qi2, more broadly) support for convenient attachment to a drained-internal-battery phone:
And thanks to USB’s (specifically, USB-C’s) combo of increasing ubiquity and functional diversity, manufactures are even beginning to bundle lithium batteries with solid-state storage:
multi-port hub connectivity:
and in other multi-function single-device combinations, which admittedly is quite clever from a diversification-and-competitive isolation standpoint, when you think about it. Just remember, if you take one or multiple on an airplane, that as with external batteries for videography, each will need to be in your carry-on luggage, not checked, and smaller than 100 watt-hours in capacity.
Power stationsBeef up the internal battery capacity, along with the array of charging-input and power-output options, and you’ve got a portable power station on your hands, capable of fueling an appliance or few or even (if it’s big enough and your house is small enough) an entire room-to-residence for a notable amount of time in the absence of utility-sourced premises “juice”. Regular readers may recall that a few months ago, I covered the Phase2 Energy PowerSource 660Wh 1800-Watt Power Station I’d recently acquired:
“Portable” is admittedly arguable here, given its size and especially weight, due to its SLA (sealed lead acid) AGM (absorbed glass mat, although I haven’t yet definitively determined this latter variation) battery foundation. But it does the job and was relatively affordable. And thanks to the portable (an unarguable use of the term, this time) solar panel I also purchased for it:
I’m not even dependent on the presence of utility-sourced premises “juice” to recharge it.
That all said, as I also mentioned back in August, an increasing number and diversity of portable power stations are now appearing based on lighter weight and more compact, not to mention more powerful-per-pound and per-cubic-inch, lithium-variant battery technologies. As a sneak peek of more in-depth coverage to come, I’ll share that recently I’ve personally acquired two EcoFlow units. The smaller one, a RIVER 2:
is passable for overnight camping trips in the van, for example. Or a day’s worth of drone flying. Or for powering my CPAP machine and oxygen concentrator overnight. And I can use the aforementioned 100-W portable solar panel to also recharge it during the day (albeit not at the same time as the Phase2), in conjunction with an Anderson-to-XT60i connector adapter cable.
The other, beefier (but still portable) EcoFlow power station I recently bought is a DELTA 2:
which I’ve supplemented with two 220-W second-generation portable solar panels in conjunction with a parallel panel output-combiner cable:
That said, as I mentioned a few months ago, the number of credible (i.e., not no-name, fly-by-night) suppliers is steadily growing, at the moment also including companies such as (but not limited to) Anker, Bluetti, Jackery and, believe it or not, even DJI (to my earlier drone-flying comments). Whoever’s product(s) you end up buying, I encourage you to keep a key foundational differentiator in mind as you select among the options. LiFePO₄ (lithium iron phosphate), sometimes instead referred to by the LFP (lithium ferrophosphate) acronym, is one common lithium-based battery approach. Another popular battery technology, which in retrospect I realize I neglected to mention back in August, is NMC (Nickel Manganese Cobalt), which is also lithium-based although “lithium” is nowhere to be found in the name.
NMC batteries have a higher energy density, therefore delivering more power for a given cell volume, and operate more stably across temperature extremes. Conversely, LiFePO₄/LFP batteries are capable of significantly higher recharge cycle counts without degrading, are more cost-effective due to both rapidly growing manufacturing supply and booming customer demand and are more thermally stable. Which technology is inside a given power station can be hard to determine; the Energizer one I previously mentioned (and then briefly owned, which you’ll read more about later), for example, was only listed as using a “lithium-ion battery”, and only after doing a bunch of research did I learn that it was NMC. The effort’s worthwhile.
A portable SSDThe other day, in preparation for re-creation with higher capacity, I backed up a 20 GByte sparse bundle-based virtual disk to my 128 GByte Samsung S1 mini external storage device, based on a Spinpoint SPU 1.8” 3600 rpm HDD, over USB 2. It took about 30 minutes for the copy to complete. Then, acting out of curiosity, I also backed up that same 20 GByte file to my 1 TByte SK Hynix “Beetle” X31 portable SSD over USB-C-based USB 3.2 Gen2 (10 Gbps). This time, it took less than 30 seconds. And no, the difference wasn’t (just) due to the more modern interface. I think it’s time to retire the Samsung Si mini, with gratitude for its long, reliable service ;-).
If you want something with a USB “stick” or “thumb drive” reminiscent (albeit “thicker”) form factor instead, there’s always also the SK Hynix “Tube” T31, a 1 GByte variant of which I also own and which leverages USB-A-based USB 3.2 Gen2 (5 Gbps, this time):
The perhaps obvious key differentiation in these (and other: SK Hynix isn’t the sole supplier) cases, versus with a conventional USB flash “stick”, is the inclusion of a true NVMe SSD module inside, coupled to a fast interface to the outside world. And versus the conventional 2.5” external HDD-reminiscent form factors of the Samsung T5 and T7 portable SSDs I also own:
the SK Hynix T31 and X31 are more diminutive, albeit more peak capacity-limited.
Wireless…err…”research” assistanceThis last one is at least mildly controversial, at least in Canada, where a ban was considered albeit ultimately paused, and Brazil, where imports were seized. It’s the $169 Flipper Zero:
described on the manufacturer’s website as (among other things) a “Multi-tool Device for Geeks” and, more extensively:
A versatile tool for hardware exploration, firmware flashing, debugging, and fuzzing [editor note: testing various protocols and signals]. It can be connected to any piece of hardware using GPIO to control it with buttons, run your own code and print debug messages to the LCD. It can also be used as a regular USB adapter for UART, SPI, I2C, etc.
Flipper Zero supports a diversity of wireless RF schemes—125 kHz RFID, NFC, Bluetooth Low Energy, etc.—along with infrared, and integrated microSD support further expands its data and application storage (and execution, in the latter case) capabilities. So, what’s the controversy? Simply stated, hardware “exploration” can in at least some cases transform into “exploitation”. Canadian officials have controversially claimed, for example, that Flipper Zero devices can be used to steal vehicles by cloning the signals used for remote keyless entry. So, assuming you take my bait and buy one, the Christmas-themed question then is “will you be naughty or nice”?
Even more for beyond 2024I’ve got plenty of additional presents-to-others-and/or-self ideas, but the point isn’t to write a book, so I’ll close here, having just passed through 2,500 words. Upside: I’ve already got topics for next year’s edition! Until then, sound off in the comments, and happy holidays!
—Brian Dipert is the Editor-in-Chief of the Edge AI and Vision Alliance, and a Senior Analyst at BDTI and Editor-in-Chief of InsideDSP, the company’s online newsletter.
Related Content
- A holiday shopping guide for engineers: 2023 edition
- A holiday shopping guide for engineers: 2022 edition
- A holiday shopping guide for engineers: 2021 edition
- A holiday gift wish list for 2020
- A holiday shopping guide for consumer tech
- 10 holiday gifts for tech lovers
The post A holiday shopping guide for engineers: 2024 edition appeared first on EDN.