ELE Times

Subscribe to ELE Times потік ELE Times
latest product and technology information from electronics companies in India
Оновлене: 1 година 50 хв тому

MIKROE Partners With Allegro MicroSystems To Introduce New Click Boards Targeting Industrial Applications

Срд, 04/03/2024 - 09:51

MikroElektronika (MIKROE), the embedded solutions company that dramatically cuts development time by providing innovative hardware and software products based on proven standards, has announced that the company is closely collaborating with Allegro MicroSystems, Inc. (“Allegro”), a global leader in power and sensing solutions for motion control and energy-efficient systems, to offer a broad portfolio of products that reduce development effort and accelerate time to market. Over the last quarter, MIKROE has introduced three new, compact, Click add-on boards incorporating Allegro’s technology.

“As a third-party tool provider we strive to promote our partners’ newest technologies and products, by making them simple to use in the broad market,” said Nebojsa Matic, CEO of MIKROE. “We are delighted to collaborate with Allegro and look forward to introducing many more Click boards utilizing their sensor technology in the near future.”

Hall Current 17 Click: 

A compact add-on board that contains a precise solution for AC/DC current sensing,  the Hall Current 17 Click board features the ACS37010, a high-accuracy current sensor from Allegro. This Click makes the perfect solution for the development of applications requiring a combination of high-current monitoring and high isolation voltage between the primary high-current and low-voltage sides.

Angle 9 Click:

Designed to detect the absolute position of a permanent magnet, this board features the AAS33001, Allegro’s precision, contactless angle sensor with incremental and motor commutation outputs and on-chip linearization for 0° to 360° angular position, rotation speed, and directional measurement. Support for incremental output interface (ABI) and motor commutation (UVW) is also available. On-chip EEPROM enables factory and customer calibration parameters to be stored. This Click board is the perfect solution for the development of contactless potentiometers, contactless knobs, RC servos, and other angular position measurement solutions.

Hall Current 16 Click:

A precise solution for AC/DC current sensing, this board is based on the ACS37002, a 400kHz high-accuracy current sensor from Allegro that features pin-selectable gains that can be used to configure the device to one of the four defined sensitivities and

corresponding current ranges, increasing design flexibility. In addition, an adjustable overcurrent fast fault provides short-circuit detection. This Click board facilitates the development of applications requiring a combination of high-current monitoring and high isolation voltage between the primary high-current and low-voltage sides.

“We are thrilled to partner with MIKROE as they release three new easy to use development tools that incorporate our industry-leading magnetic current and angle sensors,” said Ram Sathappan, Senior Director, Applications Marketing at Allegro. “We anticipate a very strong interest, as these sensor Click boards enable our customers to quickly develop innovative end products requiring high accuracy and reliability, without having to develop their own hardware.”

Like all Click boards from MIKROE, the solutions featuring Allegro’s sensor technology are packaged with mikroSDK software and a library with all the functions. The Clicks come fully tested and approved prototype, making them reliable devices ready to use on the development board. This can cut months from the development cycle and save considerable expense.

The post MIKROE Partners With Allegro MicroSystems To Introduce New Click Boards Targeting Industrial Applications appeared first on ELE Times.

Anritsu Enhances Protocol Test Solution Supporting NTN NB-IoT Devices for GEO Satellites

Срд, 04/03/2024 - 08:41

Anritsu Corporation introduces the protocol test[*1] solution for Non-Terrestrial Network (NTN)[*2] devices for GEO[*3] satellites, which extends the functionality of the Signalling Tester MD8430A to support the NTN NB-IoT[*4] defined in 3GPP Release 17.

Anritsu has been providing solutions for protocol tests, RF tests, protocol conformance tests, and RF conformance tests over the years for 3G/LTE/5G. With this functionality enhancement, Anritsu will help to improve the quality of NTN devices and contribute to the realization of a prosperous network society.

Development Background

Previously, individual satellite operators have offered their proprietary unique satellite communication services. Since the standardization of NTN communications in 3GPP Release 17, however, the satellite communication service market has rapidly grown, and various verifications based on the standard specifications have become necessary. For GEO satellites, NTN device vendors need test environments that can simulate the communication delay and transmit information to the device for delay compensation, because the distance between the satellite and the device is approximately 36,000 km. To support these test requirements, Anritsu has developed a protocol test solution that boasts high reliability built on test experiences with market-leading customers and high flexibility in condition settings.

Product Outline

The MD8430A is a base station simulator that can build a simulated network necessary for the development of chipsets and devices. With its software option NTN NB-IoT (GEO) MD8430A-043 and its control software option NTN over IoT Framework for RTD MX800050A-070, the MD8430A can be connected to an NTN device for GEO satellites, which makes it possible to test the connection with the NTN network and roaming between the terrestrial network and NTN network, among others.

Technical Terms

[*1]: Protocol test
Protocol sequence test (location registration, call placement, incoming call reception, mobile device/network disconnection, handover, etc.)

[*2]: NTN
Abbreviation for Non-Terrestrial Network. It refers to a communication network system that provides multi-layered connections among mobile devices on the ground as well as in the sea, skies, and outer space. The NTN can efficiently cover locations that are difficult for radio signals from terrestrial base stations to reach, such as remote islands, oceans, and mountains, thus delivering Internet access to underserved areas.

[*3]: GEO
Abbreviation for Geostationary Earth Orbit

[*4]: NB-IoT
Abbreviation for NarrowBand Internet of Things. It refers to a technology that enables a host of IoT devices to connect to the network with low power consumption. NTN NB-IoT is an IoT communication service for areas that terrestrial base stations cannot cover and is used in such fields as maritime shipping, logistics, mining, and automobiles.

The post Anritsu Enhances Protocol Test Solution Supporting NTN NB-IoT Devices for GEO Satellites appeared first on ELE Times.

Microchip Technology Expands Its Serial SRAM Portfolio to Larger Densities and Increased Speeds

Втр, 04/02/2024 - 09:30

Product line offers a lower-cost alternative to parallel SRAM with up to 4 Mb density and 143 MHz SPI/SQI communications

To address a common customer need for bigger and faster SRAM, Microchip Technology has expanded its Serial SRAM product line to include larger densities of up to 4 Mb and increased Serial Peripheral Interface/Serial Quad I/O Interface (SPI/SQI) speed to 143 MHz. The 2 Mb and 4 Mb devices are designed to provide a lower-cost alternative to traditional parallel SRAM products and include optional battery backup switchover circuitry in the SRAM memory to retain data on power loss.

Unlike parallel RAM, which requires large packages and at least 26–35 microcontroller (MCU) I/Os to interface, the Microchip serial SRAM devices come in a lower-cost, 8-pin package and utilize a high-speed SPI/SQI communication bus that only requires 4−6 MCU I/O pins for easy integration. This reduces the need for a more expensive, high-pin-count MCU and can help minimize the overall board footprint.

Addressing the most common drawback to serial SRAM—that parallel is faster than serial memory—the 2 Mb and 4 Mb serial SRAM devices have increased the bus speed capability to 143 MHz with optional quad SPI (4 bits per clock cycle), which greatly minimizes the speed gap between solutions.

“Serial SRAM is a popular solution for engineers who need more RAM than what is available on board their MCU but are looking to reduce cost and overall board size,” said Jeff Leasure, director of Microchip’s memory products business unit. “Microchip’s 2 Mb and 4 Mb serial SRAM devices are intended to replace expensive parallel SRAM with an easy and cost-effective alternative.”

The small-form-factor, low-power, high-performance serial SRAM devices have unlimited endurance and zero write times, making them excellent options for applications involving continuous data transfer, buffering, data logging, metering and other math- and data-intensive functions. These devices are available from 64 Kbit up to 4 Mb in density and support SPI, SDI and SQI bus modes. Visit Microchip’s Memory Products page to learn about the company’s full portfolio of memory devices.

The post Microchip Technology Expands Its Serial SRAM Portfolio to Larger Densities and Increased Speeds appeared first on ELE Times.

Vicor to present modular power conversion solutions for 48V Zonal Architectures at WCX 2024

Втр, 04/02/2024 - 09:18

High-density, 800V and 48V scalable power modules solve electrification power conversion challenges

As the automotive industry moves toward 48V zonal architectures, power system design engineers are looking for new high-voltage power conversion solutions that have leading power density, weight and scalability attributes.

Vicor will be presenting five papers at World Congress Experience 2024 (WCX) in Detroit on April 16 – 18, detailing its innovative approach to 800V and 48V power conversion using new high-density, scalable power modules with proprietary topologies and innovative packaging.

The Vicor papers are:

  • Achieving EM conducted emission compliance for high-voltage conversion with switching frequency above 1.3MHz
    Presented by: Nicola Rosano, Sr. Strategic System Engineer, EMEA
  • Designing 48V zonal architecture that keeps the high voltage inside the BEV battery pack
    Presented by: YK Choi, Sr. Field Application Engineer, Vicor, APAC

Kang YoungJae, Chief Engineer, INFAC

  • Eliminating the high-voltage precharge with existing hardware in BEV

Presented by:   Patrick Kowalyk Automotive, Principal Field Application Engineer, North America

  • Migrating to 48V with high efficiency, power density and efficient system cost
    Presented by: Patrick Wadden, Global VP, Automotive Business Unit
  • The uncertain future of aftermarket loads in a 48V world
    Presented by:   David McChesney, Strategic Account Manager, North America

The post Vicor to present modular power conversion solutions for 48V Zonal Architectures at WCX 2024 appeared first on ELE Times.

Delta India Partners with BMRCL for the Development and Naming Rights and of the Bommasandra Metro Station in Bangalore, Pioneering Sustainable Urban Mobility

Пн, 04/01/2024 - 15:22

Over two decades deploying Delta’s smart energy-saving solutions to support the rapid transformation of India’s e-mobility, renewable energy, and manufacturing sectors

In a momentous occasion commemorating its 20th anniversary in India, Delta Electronics India Pvt Ltd (Delta India) announced a transformative partnership with Bangalore Metro Rail Corporation Limited (BMRCL). The two entities have signed a Memorandum of Understanding (MoU) for the naming rights of the Bommasandra Metro Station on the yellow line of RV Road to Bommasandra Line (Reach-5) as part of Phase-II of the Bangalore Metro Rail Project.

Under this agreement, Delta India will contribute Rs. 65 Crores towards the construction of the Bommasandra Metro Station, with an initial payment of Rs. 10 Crores already made. As per the agreement, BMRCL will be offering the naming rights of Bommasandra Metro Station as ‘Delta Electronics- Bommasandra Metro Station’ for a period of 30 years

Mr. Benjamin Lin, President of Delta Electronics India, remarked, “We are incredibly proud to have the opportunity to contribute to the sustainable development of Bengaluru. Partnering with BMRCL on the Bommasandra Metro Station aligns perfectly with our global commitment to fostering sustainable cities. This new station will provide much-needed connectivity for residents and commuters, while also promoting a cleaner and more efficient transportation system for the city.”

Delta Electronics Inc. is a global leader in power management and a provider of IoT-based smart green solutions. Mirroring this commitment to environmental protection, Delta India has actively promoted energy-efficient products and services nationwide for the past two decades. This investment in the Bommasandra Metro Station further exemplifies Delta India’s dedication to supporting sustainable urban development in Bangalore.

Mr. M. Maheshwar Rao, Managing Director, BMRCL, expressed his delight about the partnership, stating, “We are delighted to partner with Delta Electronics India on this crucial infrastructure project. Their contribution of Rs. 65 Crores for the Bommasandra Metro Station signifies remarkable support for sustainable urban development. This innovative financing mechanism sets a valuable precedent for future collaborations. We commend Delta India for their dedication to sustainability and look forward to working together to create a more connected and environmentally conscious city.”

The development of the Bommasandra Metro Station through Delta India’s contribution showcases a ground-breaking approach to infrastructure projects. This collaboration demonstrates the immense potential for private sector participation in accelerating the expansion to infrastructure projects.

Mr. Niranjan Nayak, MD, Delta Electronics India Said, ” We are thrilled to collaborate with BMRCL on this innovative project that aims to revolutionize sustainable urban mobility in Bangalore. Through this partnership, Delta India is committed to enhancing the commuting experience for residents while promoting eco-friendly transportation solutions. We look forward to contributing to the growth and development of the city through this exciting initiative.”

The Bommasandra Metro Station is part of the 19.15 km yellow line under Phase II of the Bangalore Metro Rail Project. This line, connecting RV Road to Bommasandra with 16 stations, is being constructed at a cost of INR 5744 Crores. Upon completion, the Yellow Line will provide a sustainable and efficient transportation alternative for residents and commuters across Bangalore. This will significantly reduce traffic congestion on Hosur Road, leading to a substantial decrease in vehicular pollution and a cleaner, greener city.

The collaboration between BMRCL and Delta Electronics India for the construction of Bommasandra Metro Station marks a significant step forward in expanding Bangalore’s metro network and promoting sustainable urban development. This project serves as a shining example of the positive impact that can be achieved through public-private partnerships focused on innovation and environmental responsibility. As Delta India celebrates 20 years of success in India, this initiative underscores their unwavering commitment to building a sustainable future for the city and its residents.

The post Delta India Partners with BMRCL for the Development and Naming Rights and of the Bommasandra Metro Station in Bangalore, Pioneering Sustainable Urban Mobility appeared first on ELE Times.

Industry 4.0: Integrative use of data for maximized ROI

Пн, 04/01/2024 - 14:48

Courtesy: ASMPT

Information is increasingly becoming critical for success in modern SMT production. To get the most out of your manufacturing equipment, you must collect data across the board, process it in a user-oriented manner, and make it available in the right place. Advances in SMT production are characterized by increases in automation, standardization, and integration. While the early days of electronics manufacturing were marked by an approach that featured lots of manual support and was insular and closed-off in terms of information technology, a strong trend towards automation has developed in recent years that is driven by high personnel costs and a shortage of skilled workers due to demographic factors.

The people-free “lights out” factory, however, turned out to not be a sensible optimization goal for economic reasons alone because automation lowers unit costs only to a certain degree. Over-automation, on the other hand, drives up costs. In practice, the Pareto principle, which states that 80 percent of the results are achieved with 20 percent of the resources employed, applies here as well. Each additional percentage point of improvement requires a disproportionate increase in resources. ASMPT recognized this early on and reached the first stage with the Integrated Smart Factory, which focused on maximizing the return on investment instead of automation.

Interfaces as development drivers

The introduction of standardized interfaces to improve the manufacturing processes in the Integrated Smart Factory was an essential factor for the increasing integration of existing hardware and software solutions. Of particular importance are:
•    IPC-HERMES-9852 for the seamless machine-to-machine (M2M) communication
•    IPC-2591 CFX for linking machines and autonomous storage and transport systems to higher-level systems such as MES and ERP
The global innovation and market leader uses these standard industrial interfaces for its open and flexible automation concept which easily integrates third-party systems, enables retrofits, and gives electronics manufacturers the freedom to choose how, when and to what extent they want to automate their production. With this strategy, electronics manufacturers are precisely geared to the needs of users and the market in terms of their degree of digitalization and automation. The approach was subsequently complemented with software solutions for personnel deployment, quality assurance and material logistics.
The Integrated Smart Factory already features direct machine-to-machine communication – for example, the SPI system can trigger offset corrections or cleaning cycles in the solder paste printer without user intervention. The individual production and quality assurance stages, however, are still largely isolated from each other. In addition, an important resource is hardly used in an integrative way: the data that the numerous cameras, sensors and readers on the individual machines continuously produce.
In contrast to pure machine manufacturers or pure software developers, ASMPT as a system supplier covers almost the entire SMT production with its products, has unique process know-how, and knows from many years of experience which data from the production ‘data lake’ is truly relevant.
By advancing the Integrated Smart Factory into the intelligent factory, ASMPT is now leveraging this treasure trove of data and consistently using big data to optimize the return on investment both in depth, i.e., in the form of more detailed production process analysis and optimization, and across the board through the data-based integration of production areas such as the company’s intralogistics.
It is no longer just the individual process step, the individual machine, the individual setup, the individual product or the individual material requirement that is being considered, but the SMT production in its totality. This new concept of integrative data use in the intelligent factory brings benefits on several levels.

Process optimization and fault analyses

The basis of any improvement in SMT production is the continuous collection and presentation of key performance indicators (KPIs). These include, for example, the line’s throughput rate, overall equipment efficiency (OEE), utilization, and balance. To make this possible, the intelligent factory accumulates machine data in a monitoring application that is part of ASMPT’s Works software suite and makes it available in a way that is role-specific and device-independent.
With their SPI and AOI systems, modern production lines already have highly powerful quality assurance systems. Unfortunately, many of the faults they detect do not originate where they are first discovered. While these systems were able to reject faulty products, they often did not help in eliminating the underlying problems. In the intelligent factory, on the other hand, easy-to-use overarching dashboards quickly reveal what led to these errors. The data integration extends beyond the line. By comparing planning, reference and real-time production data, production obstacles are identified and can be eliminated – again through comprehensive analyses.
The M2M data flow delivers another plus in user-friendliness: Since faults that have been detected by WORKS’ multi-line analysis functions appear on the display of the affected machine, the maintenance staff knows right away where they need to take action.

Material flow based on the 4R principle

Since providing the right material in the right quantity at the right time in the right place has always been the goal of intralogistics, the integrative use of data in the intelligent factory has also revolutionized the flow of materials. For example, it is now possible to continuously compute the material consumption on the line in real time in freely definable time slices. The system combines and correlates data on planned and actual material consumption along with data on material currently along the line. Based on this information, WORKS generates material requests to the central and local storage sites along with time-controlled transportation orders. In this way, space-consuming “emergency stock” on the line can be avoided, and the material is available on time and exactly where it is actually needed.
Material buffering in the setup preparation area can also be optimized easily and efficiently with WORKS. Once a production order has been completed, the software provides the employees on the line with detailed instructions as to which component reels need to be returned to the warehouse and which should remain in the setup preparation area because they will be needed again for one or more subsequent orders. This saves time and unnecessary material travel between the shop floor and the central warehouse.
The factory-encompassing management and coordination of autonomous storage and transport systems for all production-relevant materials and tools – from the receiving of materials to the shipping of finished products – is now data-based as well.

PCB-induced program changeovers

A good practical example of the benefits of the integrative use of data is the setup changeover for a new product. In the intelligent factory, the line no longer needs to be emptied – the program changeover can be executed automatically by passing the data of the circuit board being processed from machine to machine via the standardized IPC-HERMES-9852 interface.
As soon as the PCBs are unloaded from the magazine at the start of the line, all relevant data is sent to the DEK TQ solder paste printer from ASMPT. This can be done via labels and a barcode reader or directly from the production planning system. The machine then compares the data with the information stored in the planning system. If necessary, it triggers an automatic program download and any setup changes that may be required. Once printed, the circuit board is passed along to the Process Lens SPI system along with its IPC-HERMES-9852 data and subsequently to the SIPLACE placement machines. Each manufacturing station executes a new comparison between the loaded and the required program and makes any necessary updates. Thanks to these PCB-induced program changeovers, multiple products can be manufactured simultaneously on a single line. Even the conveyors adapt automatically to the width of the circuit boards being transported. And in case of a family setup, these product changeovers can be executed with no operator assist whatsoever.

Human-machine interaction

The intelligent factory does more than control the machines based on data – it also supports the most important production resource of all: people. Scarce specialists are no longer tied to a specific line but can be deployed across the entire shop floor based on their soles and qualifications. To do this, the state-of-the-art staff management application in WORKS interfaces with the material flow planning system. If, for example, manual support is required for a setup change, a corresponding request appears on an operator’s device automatically and with sufficient lead time. And if the task can be carried out remotely, this is done conveniently via a remote cockpit. In this way, SMT lines can be kept running continuously, making the whole factory more productive. With software for all of the factory’s maintenance and repair tasks, teams of technicians can easily balance on-demand maintenance and ongoing production tasks, effectively managing all assets from whole machines to individual nozzles. When unforeseen problems arise, an AI- and NLP-based virtual assistant with an extensive knowledge base supports root cause research and troubleshooting – and best of all, you can simply ask it questions using your voice, just like talking with an experienced colleague.
“Thanks to standardized interfaces, what belongs together is now growing together in the intelligent factory,” says Bernhard Fritz, Head of Global Marketing at ASMPT SMT Solutions. “Material flow and quality management, planning and the factory floor, man and machine – all production factors are merging into an integrative whole. And the overarching improvement goal is always the best possible utilization of existing capacities – and above all, the maximum return on investment.”

The post Industry 4.0: Integrative use of data for maximized ROI appeared first on ELE Times.

New Tech Tuesdays: Transitioning Renewable Energy to 1500V with DC/DC Converters

Пн, 04/01/2024 - 12:15
Join Rudy Ramos for a weekly look at all things interesting, new, and noteworthy for design engineers.

The global renewable energy market has been experiencing substantial growth, driven by the increasing demand for clean and sustainable energy sources. Solar energy, in particular, has gained prominence as a key player in the renewable energy landscape. According to a report by Mordor Intelligence, the renewable energy market has now reached pre-pandemic levels, signifying its resilience and continued growth. This growth is attributed to various factors, including government incentives, technological advancements, and an increased awareness of environmental concerns.

The industry is constantly evolving to further enhance the efficiency and financial viability of photovoltaic (PV) systems. One critical aspect of this evolution is the need for 1500VDC PV systems. However, this transition presents challenges for DC-DC converters in supporting higher voltages. This week, we explore the progression and recent challenges of PV systems and consider how the solar market stands to benefit significantly from the AE15B-EW and AE15B-UW DC-DC converters from CUI Inc.

The Evolution of Photovoltaic Systems

To remain competitive and sustainable, photovoltaic systems must continuously improve their efficiency and financial viability. This drive for improvement stems from several considerations.

First, maximizing energy output. Efficiency is fundamental in solar energy generation. By increasing the efficiency of PV systems, more energy can be harnessed from the same amount of sunlight. This leads to higher energy production and better returns on investment. Facilities like the National Renewable Energy Laboratory (NREL), part of the US Department of Energy, regularly conduct testing of PV cells (Figure 1) and modules to ensure consistency and accuracy of PV performance metrics.

best research cell efficienciesFigure 1: Graph showing the highest confirmed conversion efficiencies across a range of photovoltaic technologies, spanning 1976 to the present. (Source: National Renewable Energy Laboratory).

Second, reducing the installation costs. Financial viability is a crucial aspect of any solar project. Lowering installation costs, such as hardware and labor, can make solar energy more affordable for consumers and businesses alike. This is essential for the widespread adoption of solar technology.

Lastly, adapting to new technologies. The solar industry must continually adapt to emerging technologies, such as advanced materials and improved manufacturing processes. These innovations contribute to both increased efficiency and reduced costs.

The Need for 1500VDC Photovoltaic Systems

One significant development in the solar industry is the transition from traditional 1000VDC PV systems to 1500VDC PV systems. This increase in voltage has several advantages. Primarily, it improves the overall energy transmission. Stepping up to higher voltage systems allows for efficient electricity transmission over longer distances. This is particularly beneficial for large-scale solar installations and solar farms. Increasing the voltage also helps to mitigate electrical losses during energy transmission, resulting in less energy waste, thereby contributing to higher overall system efficiency. Also, 1500VDC systems require fewer electrical components, such as cables and connectors, leading to cost savings during installation and maintenance.

Challenges for DC-DC Converters in 1500VDC Systems

While the transition to 1500VDC PV systems offers numerous benefits, it also presents challenges for DC-DC converters, which play a critical role in these systems. For instance, DC-DC converters must be capable of handling the increased voltage levels in 1500VDC systems. This requires robust and reliable components to ensure safety and system stability.

Also, system efficiency is critical. Maintaining high efficiency levels in DC-DC converters is essential to maximize the energy harvested from solar panels. Any loss in efficiency can impact the overall performance of the PV system. Lastly, solar installations often operate in harsh environments with temperature variations and exposure to the elements, meaning DC-DC converters must be rugged and reliable to withstand these conditions over an extended period.

The Newest Products for Your Newest Designs

In the face of these challenges posed by the transition to 1500VDC PV systems, CUI Inc. offers solutions that help shape the future of renewable energy.

CUI Inc.’s AE15B-EW and AE15B-UW DC-DC converters (Figure 2) are 15W isolated modules designed for 1500VDC PV systems. These DC-DC converters are engineered to address the high voltage challenges while ensuring safety and reliability while delivering cost savings. Likewise, efficiency is a key focus, with the AE series boasting high efficiency levels to minimize energy losses and maximize solar energy output. These converters are rugged and reliable, built to endure remote outdoor solar installations and harsh environmental conditions, ensuring the longevity of PV 11 systems.

 CUI Inc.)Figure 2: CUI Inc.’s AE15B-EW and AE15B-UW DC-DC converters are available in board, chassis, and DIN rail mounting options and feature a 15W power rating. (Source: CUI Inc.)

Available in board, chassis, and DIN rail mounting options, the AE series features power ratings from 5W to 40W. They excel in renewable energy applications, including solar power equipment, wind turbines, and electric charging stations. With an ultra-wide input voltage range of 200 to 1500VDC, input ratio ranges of up to 10:1, and robust 5600VDC input-to-output isolation, these modules are suitable for various setups.

The AE series is rated for operation at altitudes of up to 5000 meters and can withstand temperatures from -40°C to +70°C at full load, making them ideal for remote, high-altitude environments. Continuous over-current, over-voltage, and short-circuit protection with automatic recovery further enhance system reliability.

Tuesday’s Takeaway

As the renewable and solar energy markets continue to grow globally, the need for innovative solutions becomes increasingly apparent. Photovoltaic systems must evolve to maximize energy output, reduce costs, and adapt to new technologies. Hence, the transition to 1500VDC PV systems offers numerous benefits, including improved energy transmission, reduced electrical losses, and lower installation costs. However, this shift presents challenges for DC-DC converters in handling higher voltages while maintaining efficiency and reliability.

CUI Inc.’s AE series of DC-DC converters excel in addressing these challenges, offering high voltage handling, enhanced efficiency, and robust durability, making them an ideal choice for solar applications. These converters play a pivotal role in unlocking the full potential of renewable energy.

The post New Tech Tuesdays: Transitioning Renewable Energy to 1500V with DC/DC Converters appeared first on ELE Times.

Delta’s EV Charging Solutions Give Rise to Innovation with Its Diversified Portfolio

Пн, 04/01/2024 - 10:44

Delta Electronics is a truly global brand operational across Asia, Europe, America, Australia, and New Zealand. The team is highly competitive and works towards building and developing holistic, intelligent, greener, and sustainable technology and product ecosystems. Their business expertise is exceptional with patents across Power electronics, Mobility, Infrastructure, and Automation domains. Delta Electronics has been recognized as a Top 100 Global Innovator by Clarivate for the third consecutive year (2022-2024) and has outperformed with its recent “Innovation on Wheels” initiative.

Ms. Manjula Girish, Business Head- EV Charging & Photovoltaic Inverter Division at Delta Electronics India

Rashi Bajpai, Sub-Editor at ELE Times had an opportunity to virtually interact with Ms. Manjula Girish, Business Head- EV Charging & Photovoltaic Inverter Division at Delta Electronics India. The conversation focused on Delta’s initiatives and commitments towards developing sustainable and cutting-edge EV charging solutions for the Indian market.

This is an excerpt from the interview.

ELE Times: One of the key segments where the engineering and technology fraternity is anticipating exponential growth and market expansion in the next decade is EV. Also, highlighting the wave of self-sustainability under the theme of “Make in India”, what is Delta’s preparedness in addressing the same?

Manjula Girish: As a technology-oriented organization our prime focus is to develop products and solutions that cater to the advancing market requirements and emerge as a leader in the segment. When we speak about sustainability as a goal to be achieved in doing business, Delta is working in the EV segment which is in many ways one of the key elements in driving the sustainability movement, pointing towards carbon neutrality and net zero emissions. In terms of our efforts towards the prospects of “Make in India”, we firmly believe in the policy as an organization and are very critical in subjecting our manufacturing procedures to the Government of India mandates and specifications. We adhere to all the regulations set as per the government’s standards while putting a product out in the market. Lastly, when we speak about the shifting gears towards e-mobility with the penetration of EVs getting ramped up, be it two-wheelers, three-wheelers, four-wheelers, and the bus, Delta is a leader in developing EV charging solutions of diverse range. Hence, we are all for building sustainable and indigenous products with an orientation towards EV solutions.

ELE Times: What are the key focus areas of Delta in the development of EV charging solutions and products?

Manjula Girish: Delta has built a strong framework of EV charging solutions. The product portfolio in this segment is very diverse- specifications catering to multiple use cases. Our products include- fast chargers, slow chargers, and AC chargers. We also have chargers that can be used in charging hubs for fleet operations. We have EV charging solutions for Residential, Commercial, and Public sectors with necessary infrastructure support. On the lines of innovation, we are currently working on a portable charging solution that can be carried along with the vehicle and can be used at various stages while commuting. Right now, our chargers possess a power range between 3.3 kilowatts to 240 kilowatts.

ELE Times: Please help us understand the DeltaGrid Energy Management System from a technology perspective, and what outcomes have your customers experienced?

Manjula Girish: When we talk about the Grid technology and substantiating the grid power, we do have green EV charging solutions where you can generate, store, and utilize the power as per convenience and need. In case the power generated is excessive, it can be fed back to the grid. With such technology in place and in trend, we are surely ramping up the development and their installations. Delta has also partnered with certain companies in the segment and also foresees many future collaborations.

ELE Times: EV battery technology remains the prime focus of EV manufacturers, as they are seen investing heavily in R&D towards improving energy density, charging speed, and also the lifespan of batteries. What level of research has Delta taken up to cater to the highly anticipated increasing demand, as EV gains popularity across wider swaths of the population?

Manjula Girish: Delta has developed a range of charging solutions- slow and fast chargers; that cater to different power requirements. We have solutions in place that help charge a car between 6-7 hours, depending on the range. Our fast charging solutions provide full charging between 2-3 hours, and can also map the charging activity. We have right from 25 kilowatts to 240 kilowatts fast charging solutions based on the power need. The OEMs today recommend two fast charging points and one slow charging point to facilitate healthier and longer battery life. For all these use cases, Delta has got a solution in line.

ELE Times: What is Delta’s Plan of Action/ expansion goals towards building a deeper EV charging infra in the country, given we already have many giants and start-ups that have stepped up in setting up quality EV charging stations across the country?

Manjula Girish: Delta’s procedure is such that every product that we put out in the market goes through extensive and aggressive testing procedures, hence there is no compromise in terms of quality. We are leading the way in setting up EV charging infra around many government organizations – MSEDL, and BPCL to name a few, and are a preferred partner for the Government of India and the distribution agencies. In terms of fleet operations, we have partnered with TATA Power for the installation of chargers across India. We have also collaborated with BluSmart- an exclusive EV fleet operator to set up charging hubs to facilitate seamless four-wheeler operations across India.

ELE Times: What is the next big breakthrough after the successful launch of “Innovation on Wheels” that Delta is working on?

Manjula Girish: Delta Electronics is both a product and a solution-oriented organization. Our focus is to actively innovate in untapped areas. We strongly believe in nurturing every aspect of technology that helps us bring out the best products and solutions in the market at the right time. Our R&D goals are bold as we embark on developing better futuristic systems. Also, as mentioned earlier, we strongly support the “Make in India” initiative of the government and in that respect, Delta has come up with a manufacturing ecosystem in Krishnagiri, where 4-5 plants have been set up. Also, there are multiple product lines that we plan on shifting to India. There are multiple initiatives in varied domains that Delta is working on. Of course, “Innovation on Wheels” has been a huge development success along with the product positioning, and we anticipate many such projects in areas of automation, power electronics, mobility, and infrastructure, to lead the Indian and global markets.

The post Delta’s EV Charging Solutions Give Rise to Innovation with Its Diversified Portfolio appeared first on ELE Times.

Safely connect & disconnect high current loads to the battery

Пн, 04/01/2024 - 08:12

The Vishay 48V 100A eFuse safeguards power hardware with an adjustable current limit. It securely connects/ disconnects a 48V power source (like a high-energy battery) to any vehicle load by employing Automotive Grade MOSFETs as primary switches, capable of continuous operation up to 100A.

To Download the Whitepaper Please Fill in the Form. >>>>

[contact-form-7]

 

The post Safely connect & disconnect high current loads to the battery appeared first on ELE Times.

STMicroelectronics boosts sensing creativity with new all-in-one MEMS Studio desktop software solution

Пн, 04/01/2024 - 07:39

Easy to use, efficient, and consolidated tool supports application development for next-gen high-tech MEMS sensor products

STMicroelectronics’ MEMS Studio is a new all-in-one tool for MEMS sensor evaluation and development, connected closely with the STM32 microcontroller ecosystem and available for Windows, MacOS, and Linux operating systems.

By unifying the sensor-development workflow, from evaluation to configuration and programming, MEMS Studio accelerates development and simplifies bringing rich contextual awareness to users’ projects. Enhanced features help easily acquire and clearly visualize sensor data to explore the operating modes and optimize performance and accuracy. There are also tools for pre-built library testing, as well as convenient drag-and-drop algorithm creation for intuitive, no-code development of STM32 MCU firmware.

MEMS Studio supports the wide portfolio of ST MEMS sensors, including motion sensors, environmental sensors, and infrared sensors. It provides tools to explore and use all the sensors’ features including the finite state machine (FSM) and embedded edge AI in inertial modules for power-efficient inferencing directly in the sensor. These include creating and managing decision trees in sensors equipped with ST’s machine-learning core (MLC), monitoring interrupts status, and testing advanced features like FIFO, pedometer, and freefall detection embedded in the sensor.

MEMS Studio also offers a new experience for analyzing sensor data in runtime and offline, where users can visualize, label, and edit the data for the best algorithm implementation. Spectrogram analysis and fast Fourier transform (FFT) are also available and help understand the sensor signal for the best detection of the sensing application target.

 Users can choose from a wide variety of compatible development boards, including STM32 Nucleo expansion boards, sensor adapters, and ST’s multi-sensor evaluation kits. These comprise the SensorTile.box PRO, STWIN.box, and STEVAL-MKI109V3 professional MEMS adapter motherboard with adjustable power settings and a STM32F401VE MCU on-board.

As creative use of MEMS sensors continues to drive innovation in cutting-edge applications, MEMS Studio empowers designers to add new and more advanced functions in next-generation high-tech products. Its release promotes the development of smart appliances, medical wearables, and technology for digital healthcare, smart buildings and factories, robotics, asset tracking, and smart driving.

Consolidating and extending the features of established sensor-development tools including AlgoBuilder, Unico-GUI, and Unicleo-GUI, MEMS Studio is available now to download, free of charge, from www.st.com/mems-studio.

STM32 is a registered and/or unregistered trademark of STMicroelectronics International NV or its affiliates in the EU and/or elsewhere. In particular, STM32 is registered in the US Patent and Trademark Office.

The post STMicroelectronics boosts sensing creativity with new all-in-one MEMS Studio desktop software solution appeared first on ELE Times.

Nuvoton Technology for Green Energy, Endpoint AI, and Automotive Applications at Embedded World 2024

Птн, 03/29/2024 - 11:52

Energy saving and power management systems are the next green generation

Nuvoton will be showing green tech, endpoint AI, and automotive products at Embedded World 2024, booth 3A-418 in Germany. These products provide solutions for energy-saving cooling and ventilation, automotive AI guidance and safety challenges, and AI-based manufacturing and smart home demands.

Ultra-Low-Power USB Type-C PD 3.0 MCU, Hydrogen Sensors, Energy-Saving Solutions

Nuvoton’s NuMicro M2L31 microcontroller, with an Arm Cortex-M23 core featuring 64 to 512 Kbytes of ReRAM (Resistive Random-Access Memory), is an ultra-low-power product designed with a commitment to sustainability and energy efficiency. The M2L31 series not only supports two CAN FD and two USB Type-C PD 3.0 connections but also prioritizes robust security features to safeguard valuable data.

Nuvoton’s reference design for a NuMicro M2L31 MCU-based DC fan system compliant with USB Power Delivery 3.0 includes motor drive capability and a user interface to control the fan and upload or display system information. Highlights include BOM cost savings due to integrated features, simplified PCB layout, and flexible input voltage – together, these energy and resource-saving features not only reduce costs but also help create a greener product.

Nuvoton’s other eco-friendly offerings include the KM1M7AF digital power control microcontroller with security features; a compact high-efficiency, low-vibration industrial 48V fan motor driver (KA44370A); a one-chip AC impedance measurement design for efficiency and safety in battery management systems; and an ultra-low power hydrogen sensor that is ideal for monitoring green energy applications such as hydrogen stations, fuel cells, and hydrogen pipelines.

Automotive HMI and Safety ICs Enable Next-Generation Automotive Applications

In the automotive sector, Nuvoton has an automotive Human Machine Interface (HMI) processing IC based around the Gerda graphic processor series. This HMI IC supports fast booting and attractive 2.5D graphics. Its optimized system cost and external component integration are ideal for low-to-mid-end automotive applications.

For automotive safety and AI driving scenarios, Nuvoton’s Multi-Sensing Bridge IC can aggregate and synchronize data from image, audio, depth sensors, and signal processing ICs. This single-package IC with internal DRAM also has XR/VR/AR and drone applications. In addition, Nuvoton will be showing an automotive battery monitoring IC and pack monitoring IC at Embedded World 2024.

AI Vision Warehousing Solutions and Smart Home Technology ICs

Nuvoton displays two user-trainable AI systems for classifying camera data. The Arm Cortex-M55-based M55M1 Automatic Medicine Classifier uses a hardware-accelerated neural network to identify medicines based on visual input and user training. Based on related technology, the Arm Cortex-A35 MA35D1 Intelligent Warehouse Management System is a visual AI system for identifying different varieties of fruit in warehouses and similar environments. Both these systems support LCDs of appropriate size for the user interface.

For smart home products, Nuvoton presents the NAU83G60 Intelligent Smart Amplifier, which is ideal for consumer audio. The company will also be showing a smart ITO panel solution with touch keys and voice prompt capability. This solution is based on the M258 microcontroller with an Arm Cortex-M23 core and features Nuvoton’s fast LCD development and simulation tool, NuTool-LCDView.

The post Nuvoton Technology for Green Energy, Endpoint AI, and Automotive Applications at Embedded World 2024 appeared first on ELE Times.

Rohde & Schwarz first to show measurements on novel Bluetooth Channel Sounding signals for positioning accuracy

Чтв, 03/28/2024 - 14:12

Rohde & Schwarz will present the first real-time measurements on the planned new Bluetooth signals to support Channel Sounding. The demonstration at the embedded world Exhibition & Conference in Nuremberg, Germany, will be run on an R&S CMW500 wideband radio communication tester. The Bluetooth Channel Sounding feature will enable unprecedented positioning accuracy for consumer and commercial applications. The signal measurement capabilities to support chip and device development are eagerly awaited by the industry.

For consumer and commercial devices, Bluetooth is the most widely installed technology with location-determining capabilities. Channel Sounding, soon to be introduced, will significantly improve the accuracy of real-time location services for determining position using Bluetooth to an accuracy of 50 cm or better. In addition to improved location accuracy, Channel Sounding is expected to consume less power than existing Bluetooth location services and provide increased security. The improved accuracy will be a major step forward in particular for indoor applications such as asset tracking on the factory floor or in the warehouse, as well as for secure access to buildings or vehicles.

Hardware changes for Bluetooth devices introduced on a new physical layer are required to support the improved location functions. Engineers who want to start developing the necessary chips and devices, including support for Channel Sounding urgently require reliable and accurate measurements on the signals that enable the new functions. Rohde & Schwarz has already prepared options for its R&S CMW platform to support the corresponding RF physical layer measurements.

The current draft of the next version of the Bluetooth Core Specification defines support for phase-based ranging (PBR) tone exchange and round-trip time (RTT). To give hardware and software engineers involved in Bluetooth chipset and device development an early preview of the PBR measurement techniques, Rohde & Schwarz will be presenting a session at the embedded world Conference called “Redefining Bluetooth Low Energy Testing to Cover Latest Bluetooth Innovations” at 1:45 p.m. on April 10. A live demonstration of the measurements will take place at the Rohde & Schwarz booth 4-218 in hall 4 at the embedded world Exhibition in Nuremberg, Germany, April 9 to 11, 2024.

The post Rohde & Schwarz first to show measurements on novel Bluetooth Channel Sounding signals for positioning accuracy appeared first on ELE Times.

Vishay Intertechnology FRED Pt 500 A Ultrafast Soft Recovery Diode Modules in the New TO-244 Gen III Package Deliver High Reliability

Чтв, 03/28/2024 - 13:44

Featuring a Common Cathode Configuration, Devices Can Withstand IOL Cycles Up to 5x That of the Previous TO-244 Generation for Improved Life Expectancy While
Reducing Losses

Vishay Intertechnology, Inc. has introduced two new FRED Pt 500 A Ultrafast soft recovery diode modules in the new TO-244 Gen III package. Offering higher reliability than previous-generation solutions, the Vishay Semiconductors VS-VSUD505CW60 and VS-VSUD510CW60 are designed to reduce losses and EMI / RFI in high-frequency power conditioning systems.

The rugged TO-244 package of the diode modules released today withstands 46 000 IOL cycles at given conditions, offering an improved life expectancy over previous-generation devices. In addition, the industry-standard package is footprint-compatible with competing solutions in the TO-244 to provide a drop-in replacement for existing designs.

The VS-VSUD505CW60 and VS-VSUD510CW60 are ideally suited for high-frequency welding; high current converters and ballast water management systems (BWMS) in railway equipment, cranes, and ships; UPS; and other applications where switching losses comprise a significant portion of the total losses. In these applications, the softness of their recovery eliminates the need for a snubber, reducing component counts and lowering costs.

Offered in a common cathode configuration, the diode modules provide low forward voltage drop down to 0.82 V, thermal resistance — junction to case — of 0.16 °C/W, and an operating temperature range up to +175 °C.

Device Specification Table:

Part number VS-VSUD505CW60 VS-VSUD510CW60
VR (V)

600

IF(AV)(A)

500

Qrr typical (nC) 460 1770
trr (ns) 178 270
VFM @ 250 A, +175 °C (V) 0.95 0.82
RthJC per diode (°C/W)

0.160

Package

TO-244

The post Vishay Intertechnology FRED Pt 500 A Ultrafast Soft Recovery Diode Modules in the New TO-244 Gen III Package Deliver High Reliability appeared first on ELE Times.

Infineon introduces 80 V MOSFET OptiMOS 7 with lowest on-resistance in the industry for automotive applications

Чтв, 03/28/2024 - 13:33

Infineon Technologies AG has introduced the first product in its new advanced power MOSFET technology OptiMOS 7 80 V: The IAUCN08S7N013 features a significantly increased power density and is available in the versatile, robust, and high-current SSO8 5 x 6 mm² SMD package. The OptiMOS 7 80 V offering is a perfect match for the upcoming 48 V board net applications. It is designed specifically for the high performance, high quality and robustness needed for demanding automotive applications like automotive DC-DC converters in EVs, 48 V motor control, for instance, electric power steering (EPS), 48 V battery switches and electric two- and three-wheelers.

Compared to the previous generation, the RDS(on) of the Infineon IAUCN08S7N013 has been reduced by more than 50 per cent and is now the best RDS(on) in the industry with a maximum of 1.3 mΩ. Users benefit from minimized conduction losses, superior switching performance and the highest power density in a 5 x 6 mm² package. In addition, the IAUCN08S7N013 also features low package resistance and inductance, as well as a high avalanche current capability. For automotive applications, it has an extended qualification that goes beyond AEC-Q101.

The post Infineon introduces 80 V MOSFET OptiMOS 7 with lowest on-resistance in the industry for automotive applications appeared first on ELE Times.

Anritsu and the University of Texas at Dallas Collaborate to Showcase Orchestration System for OpenROADM/IPoDWDM at OFC 2024

Чтв, 03/28/2024 - 13:25

Anritsu Corporation in collaboration with the University of Texas at Dallas showcased its orchestration system for overall control and monitoring of combined OpenROADM[*1] and IPoDWDM[*2] networks at the Optical Fiber Communication Conference and Exhibition 2024 (OFC2024) on March 26-28, 2024, in San Diego, USA.

These networks are controlled by the YANG model devised by OpenROADM and IETF[*3] as a vendor-independent network control method with an orchestration system managed by the University of Texas at Dallas. In the demonstration, Anritsu’s compact, high-performance MT1040A 400G Tester is connected via an open interface to the Add/Drop line to monitor quality in a live traffic environment.

Today’s network functions are becoming more sophisticated and virtualized for diversifying all-photonics networks and Beyond 5G/6G use cases. Operators expect optimized QoS and reduced maintenance and management costs with automated network settings as well as autonomous operation. Achieving these goals demands integrated transmission and IP network management as well as network quality monitoring.

In this exhibit, two 400G ports on Anritsu MT1040A with built-in 400G OpenZR+ transceivers connected via the Add/Drop line are positioned at each end of an Open ROADM system. In addition to making the channel settings from the orchestration system, the system also monitors line quality data from the MT1040A, providing a unified single system for monitoring communication channel changes based on quality data and for evaluating ROADM path changes.

OpenLab @ UT Dallas contributes to verifying hardware and software interoperability specified by OpenROADM MSA. The lab issues test labels certifying devices that pass interoperability verification and feeds back these test results to OpenROADM MSA.

As a result of this collaboration with the orchestration system for managing OpenROADM and IPoDWDM, Anritsu is contributing to the development of systems for configuring future automated and autonomous networks.

Product Details Network Master Pro (400G Tester) MT1040A

MT1040A is a B5 size 400G handheld tester with excellent expandability and operability. It is a touch panel-operated field measurement instrument equipped with a 9-inch screen that is small enough to carry with a single hand. It supports a range of interfaces from 10M up to 400G.

MU104014B is the test module and has the following futures to test 400ZR/ZR+.

  • Powerful hardware with cooling for easy handling 400ZR/ZR+ transceivers
  • Flexible Settings for All Network Environments
    • Grid, Wavelength, Tx Power setting
    • Coherent monitoring (OSNR, SOP, CD, etc.) via OIF CMIS
    • Media-side FEC monitoring (PreFEC BER) via OIF CMIS
    • 1x 400G, 4x 100G, 2x 100G, 1x 100G client signal
    • Flexible Layer-2 to Layer-4 configuration
  • History Function Monitoring Live Network
    • Auto-save all of results at a minimum of 1 second
    • CSV output for detailed analysis and comparison
Technical Terms

[*1] OpenROADM
Defines interoperability specifications for optical transmission equipment (ROADM), optical transponders, and pluggable optical components, as well as YANG data model specifications, and specifies interfaces for achieving interconnectivity and interoperability between each functional part of an optical transmission network in a multi-vendor environment.

[*2] IPoDWDM
Abbreviation for IP over DWDM technology carrying IP packets directly using high-speed DWDM (dense wavelength division multiplexing) technology. The IP layer and optical transport layer are integrated by combining a transceiver such as OpenZR+ with optical transport functions with the IP router interface to help cut planned capital investment and operation costs.

[*3] IETF
Abbreviation for the Internet Engineering Task Force technical organization tasked with assuring and improving internet interoperability. Defines YANG Model specifications for communications protocols and routers.

The post Anritsu and the University of Texas at Dallas Collaborate to Showcase Orchestration System for OpenROADM/IPoDWDM at OFC 2024 appeared first on ELE Times.

STSPIN32G4, The 1st motor controller with an integrated MCU solves 2 major challenges

Чтв, 03/28/2024 - 06:58

Author: STMicroelectronics

The STSPIN32G4 integrates a three-phase gate driver, an STM32G431, and a power management system under one package to solve major engineering challenges, thus enabling new applications. While ST continues to offer STSPIN motor drivers, we also realized that engineers still face several conundrums. Designers want to run more powerful applications but must also shrink their PCBs and reduce costs. Similarly, applications demand more efficiency, but improving it by a few decimal percentage points remains a struggle. ST engineers thus launched the STSPIN32G4 because no other integrated motor controller offered such a powerful mainstream MCU and such a flexible power management system.

STSPIN32G4 and the first challenge: How to make things more powerful in a smaller design? More power under one roof The STSPIN32G4The STSPIN32G4

Let’s take the example of an engineer working on a high-end vacuum cleaner with a high-speed motor. The MCU inside the STSPIN32G4 will stand out, in this instance, because of its computational throughput. A lower-performance CPU core means a lower conversion rate when designing a field-oriented control (FOC) sensorless application. The engineer in the vacuum cleaner example would have to use two or three shunt resistors to compensate for the MCU’s lower performance. On the other hand, the greater computational throughput means a single shunt is sufficient. As a result, using the STSPIN32G4 enables the creation of a powerful application with fewer components.

More peripherals in one device

A team working on a collaborative robot or a guided vehicle would also appreciate the MCU in the STSPIN32G4 for reasons other than the bump in DMIPS. In this instance, engineers must drive two sets of wheels, but traditional motor controllers don’t have enough analog-to-digital converters to handle such a task. As a result, engineers end up using two motor drivers. The STSPIN32G4 is unique because it provides two sets of PWM timers and 12-bit ADCs, among other things. It, therefore, becomes possible to drive two motors with just one integrated device.

Saving 65% space

While it’s impossible to enumerate all the features in the STSPIN32G4, the reality is that its integrated nature is one of the best ways to solve the space challenge. Motor control applications are increasingly smaller, whether for convenience, costs, or to stand out better. Thanks to its integrated nature, the STSPIN32G4 helps reduce the overall design size by 65% compared to discrete solutions. Practically, it allows engineers to put the control system at the back of the motor and design a much smaller e-bike, vacuum cleaner, or power tool, among other things.

STSPIN32G4 and the second challenge: how to make things more energy efficient while keeping costs down? A more efficient power management

According to our benchmarks, using the new device lowers the overall power consumption by 3% to 5% compared to a system that uses external components. A saving of just a single percent already has a significant impact. ST provided such power efficiency by bringing the typical standby consumption to only 15 µA thanks to a very low-quiescent regulator. Hence, we expect engineers to create significantly more compact designs without needing an external cooling system, thus lowering the BoM.

The motor controller also supports a supply voltage of up to 75 V, compared to only 48 V previously. Additionally, the STSPIN32G4 comes with an over-current protection mechanism and a drain-source voltage (VDS) monitoring system that acts as a redundancy. It monitors the external MOSFETs and turns all gate driver outputs off if it detects an over-voltage condition. As a result, we expect engineers to use the STSPIN32G4 in appliances. Indeed, a white good connected to a grid often suffers from wide voltage variations from the mains. The greater supply voltage range and protection features of the new device will better handle these abnormal conditions.

A more flexible power management

Engineers sometimes shy away from integrated solutions, fearing they may restrict their optimization capabilities. Hence, ST ensured a high level of customization. For instance, developers can program registers through an I2C interface to use the STSPIN32G4’s VCC buck converter. Moreover, we published an application note showing how to use the buck regulator in a buck-boost configuration by adding a few external components. Finally, engineers can bypass the buck and LDO regulators to rely on only an external Vcc supply.

Teams that designed a highly precise power supply to meet the stringent requirements of their application can, thus, ignore the STSPIN32G4 regulators. In contrast, others can simplify their designs by using its VCC buck converter to power a few external components, like a memory module. Similarly, developers can choose to enable or disable the standby mode. Such a feature is vital for products like power tools. When users pick a drill after months or even years, they must use it immediately. In such a case, engineers will want to completely disconnect their system from the battery to maximize its usage.

Engineers also get a lot more flexibility in how they drive a motor. They could use a 6-step driver circuit or a field-oriented control, both with or without a sensor and with one, two, or even three shunts. It gives developers the ability to control how much measurement data they gather. Consequently, it also becomes possible to qualify an STSPIN32G4 and use it in many different applications, which can help a company shorten its time to market and optimize its operations.

How to get started The EVSPIN32G4The EVSPIN32G4

ST launched two development boards to enable teams to test and experiment with the STSPIN32G4. The EVSPIN32G4 uses STL110N10F7 power MOSFETs and a heat sink to allow an output current of up to 20 A RMS. As a result, teams can push the new devices to develop more powerful designs. However, ST is also mindful that not every designer will use the STSPIN32G4 in high-powered systems. Hence, we are also launching the EVSPIN32G4NH, a similar development board without passive cooling; NH at the end of the nomenclature stands for “no heat sink”. We also updated the X-CUBE-MCSDK to support the new boards and devices.

The EVLSPIN32G4-ACTThe EVLSPIN32G4-ACT

More recently, our teams released two reference designs. The EVLSPIN32G4-ACT drives a three-phase brushless motor supporting up to 5 ARMS and can manage a supply input of 48 V for a surprising 250 W total power in a board measuring only 62 mm x 50 mm. Additionally, it can connect to the STWIN.box (STEVAL-STWINBX1) to rapidly create a high-speed data logger. Thanks to our FP-IND-DATALOGMC software pack and Quick Start Guide, engineers have a step-by-step process to connect both boards and run applications that can gather data from the sensors on the STWIN.box and the motor itself. We even offer a GUI to help visualize the information.

The EVSPIN32G4-DUALThe EVSPIN32G4-DUAL

The other board is the EVSPIN32G4-DUAL, which combines the STSPIN32G4 and the STDRIVE101, a triple half-bridge gate driver. As a result, the board can drive two three-phase brushless motors for up to 10 ARMS output current and a supply of 74 V thanks to two power stages. Thanks to the operational amplifiers of the STSPIN32G4, it’s possible to have a sensor-less system with a single shunt current sensing or use Hall sensors and encoders with the embedded MCU. Put simply, the reference design shows how to create a powerful dual motor application in a small factor for home appliances, e-mobility, pumps, tools, and more.

The post STSPIN32G4, The 1st motor controller with an integrated MCU solves 2 major challenges appeared first on ELE Times.

Anritsu and NTT Collaborate to Showcase End-to-End 400G Testing for IOWN Open APN at OFC2024

Срд, 03/27/2024 - 11:51

Anritsu Corporation, in collaboration with NTT, will participate in the “OFCnet” state-of-the-art network demonstration environment at the Optical Fiber Communication Conference and Exhibition 2024 (OFC2024) to be held in San Diego, USA, from March 26 to March 28, 2024. We will showcase 400G Testing that supports IOWN Open APN[*1].

The demand for interconnection bandwidth between data centres has greatly increased due to the rapid spread of generative AI and cloud services, as well as advances in DX (Digital Transformation). To realize a Datacenter Exchange (DCX) that connects remotely distributed data centres while featuring ultra-high capacity, ultra-low latency, and ultra-low power consumption, the IOWN Global Forum has proposed the Open All-Photonic Network (Open APN) as a new network infrastructure.

At our exhibition, the IOWN Networking Hub (Booth 912), an interconnected booth utilizing OFCnet, will showcase an example Datacenter Exchange (DCX) based on the IOWN APN in a multi-vendor configuration. 400G optical transceivers compliant with the OpenZR+[*2] MSA will be mounted on data centre switches, being interconnected through an OpenROADM network constructed in an adjacent booth, in accordance with OpenROADM MSA[*3] and OpenLab@ University of Texas at Dallas (UTD). Anritsu will provide two interconnected compact and lightweight handheld measuring instruments, MT1040A, that will simultaneously transmit and receive high-bandwidth 400-Gbps traffic, thereby demonstrating the end-to-end performance of the multi-vendor network. The MT1040A flexibly supports standard protocols such as 400G Ethernet, OpenZR+, OpenROADM, and more. It provides real-time measurements of the physical layer (Layer 1) Pre/Post FEC BER, as well as Ethernet (Layer 2) latency and throughput.

Through this collaboration, Anritsu will contribute to forums such as the IOWN Global Forum, Open ROADM, and OpenZR+, with the realization of a data center exchange (DCX) based on the IOWN Open APN architecture. In addition, we will contribute to the construction of automated systems used for orchestration that integrate higher-level network management.

Product Details MT1040A Network Master Pro / MU104014B 400G (QSFP-DD) multi-rate module

MT1040A is a B5 size 400G handheld tester with excellent expandability and operability. It is a touch panel-operated field measurement instrument equipped with a 9-inch screen that is small enough to carry with a single hand. It supports a range of interfaces from 10M up to 400G.

MU104014B is the test module and has the following futures to test 400ZR/ZR+

  • Powerful hardware for easy handling 400ZR/ZR+ transceivers
  • Flexible Settings for All Network Environments
    • Grid, Wavelength, Tx Power setting
    • Coherent monitoring (OSNR, SOP, CD, etc.) via OIF CMIS
    • Media-side FEC monitoring (PreFEC BER) via OIF CMIS
    • 1x 400G, 4x 100G, 2x 100G, 1x 100G client signal
    • Flexible Layer-2 to Layer-4 configuration
  • History Function Monitoring Live Network
    • Auto-save all of the results at a minimum of 1 second
    • CSV output for detailed analysis and comparison
Technical Terms

*1 Open APN
Abbreviation for Open All-Photonic Network – an open architecture proposed by the IOWN Global Forum (IOWN GF). It features low power consumption, high capacity, and low latency by configuring an entire section with a photonic network.

*2 OpenZR+
A transceiver interface standard is used mainly in data centre interconnect (DCI). It supports data rates of 100G, 200G, 300G, and 400G, and supports large-scale links of over 120 km with OFEC (forward error correction). Facilitates lower-cost connections between data centres than conventional wavelength division multiplexing (WDM) systems.

*3 OpenROADM MSA
Abbreviation for OpenROADM Multi-Source Agreement, the international organization established to promote OpenROADM.
OpenROADM specifies interconnection specifications for optical transmission equipment (ROADM), optical transponders, and detachable optical components, as well as YANG data model specifications, and defines interfaces for realizing interconnection and interoperability between each functional part of an optical transmission network in a multi-vendor environment.

The post Anritsu and NTT Collaborate to Showcase End-to-End 400G Testing for IOWN Open APN at OFC2024 appeared first on ELE Times.

Renesas Introduces Industry’s First General-Purpose 32-bit RISC-V MCUs with Internally Developed CPU Core

Срд, 03/27/2024 - 11:34
RISC-V MCUs Offer Developers a New Low-Power, High-Performance Option Along with Full Toolchain Support
Renesas Electronics Corporation, a premier supplier of advanced semiconductor solutions, today announced the industry’s first general-purpose 32-bit RISC-V-based microcontrollers (MCUs) built with an internally developed CPU core. While many MCU providers have recently joined investment alliances to advance the development of RISC-V products, Renesas has already designed and tested a new RISC-V core independently, which is now implemented in a commercial product and available globally.
The new, R9A02G021 group of MCUs provides embedded systems designers a clear path to developing a wide range of power-conscious, cost-sensitive applications based on the open-source instruction set architecture (ISA).
While most of today’s RISC-V solutions target specific applications, the R9A02G021 group MCUs are designed to serve multiple end markets, such as IoT sensors, consumer electronics, medical devices, small appliances and industrial systems. Similar to existing general-purpose MCUs, designers will have access to a full-scale development environment for the R9A02G021, provided by Renesas and its extensive network of toolchain partners. This will allow them to significantly reduce costs, engineering resources and development time.
“From our RISC-V purpose-built ASSPs to this new general-purpose MCU, our goal is to deliver commercially viable products that customers can take to mass production quickly while demonstrating the benefits of the RISC-V architecture,” said Daryl Khoo, Vice President of Embedded Processing 1st Business Division at Renesas. “In addition, customers often face complex design challenges and tradeoffs such as performance, power consumption, memory, or a choice of CPU architecture. The new RISC-VMCU provides an additional degree of choice to customers who want to use products with the open architecture.”
As an early adopter of RISC-V, Renesas has a rich offering of RISC-V application-specific products, including its 32-bit voice-control and motor-control ASSP devices and RZ/Five 64-bit general purpose microprocessors (MPUs), which were built on CPU cores developed by Andes Technology Corp. The R9A02G021 group represents the first generation of general-purpose MCUs based on the internally developed RISC-V core by Renesas that will roll out over the next several years.
“Until now, the MCU, a key potential market for RISC-V has been lacking strong commercial designs from leading suppliers which make up around 85% of the MCU market,” said Tom Hackenberg, Principal Analyst, Computing & Software, More Moore Business Line at Yole Group. “With Renesas introducing full commercial availability of a RISC-V multimarket MCU to its diverse MCU portfolio, as well as much-needed support from well-recognized industry standard tools suppliers, the RISC-V market is poised to finally start accelerating growth. As other leading vendors follow Renesas’ example, RISC-V should approach 10% of the overall MCU market by the end of 2029 with significant growth potential beyond.”
Balancing Performance and Power
The R9A02G021 RISC-V group offers ample performance with clock speeds up to 48MHz while consuming extremely low power on standby at 0.3µA. It provides 128KB of fast flash memory, 16KB of SRAM memory and 4KB of flash memory for data storage. Designed to withstand harsh conditions, the MCUs can operate reliably at ambient temperatures ranging from -40 °C to 125 °C. The MCUs come with standard serial communications interfaces, as well as digital-to-analog converter (DAC) and analog-to-digital converter (ADC) functions to facilitate high-speed and secure connections with sensors, displays and other external modules. The wide 1.6V to 5.5V input voltage range enables low-voltage, low-current operation and allows noise immunity, making the R9A02G021 ideal for battery-powered devices.
Key Features of the R9A02G021 MCU Group
  • CPU: RISC-V core at 48MHz, 3.27 Coremark/MHz
  • Memory: 128KB code flash, 16KB SRAM (12KB and ECC SRAM 4KB) and 4KB data flash
  • Power Consumption: 162µA/MHz (Active power), 0.3µA (SW Standby), 4µs (Standby wakeup)
  • Serial communications interfaces: UART, SPI, I2C, SAU
  • Analog peripherals: 12-bit ADC and 8-bit DAC
  • Temperature range: -40°C to 125°C (Ta)
  • Operating voltage range: 1.6 to 5.5V
  • Packages: 16 WLCSP, 24/32/48 QFN package (QFP option)
The R9A02G021 RISC-V MCUs are fully supported by Renesas’ e² Studio Integrated Development Environment (IDE), offered to customers at no cost. The comprehensive toolchain includes a code configurator, the LLVM compiler and a fast prototyping board (FPB). Complete development environments are also available from Renesas’ partners: IAR with its Embedded Workbench IDE and I-jet debug probe, and SEGGER with the Embedded Studio IDE, J-Link debug probes and Flasher production programmers. Supporting documentation includes the FPB user manual, a Getting Started guide, schematics, Bill of Materials (BOM), and Gerber files.

The post Renesas Introduces Industry’s First General-Purpose 32-bit RISC-V MCUs with Internally Developed CPU Core appeared first on ELE Times.

Accelerating the Adoption of AI Applications, Nuvoton Technology Introduces an Endpoint AI Product Platform Based on Microcontrollers and Microprocessors

Срд, 03/27/2024 - 11:00

Nuvoton Technology introduces an endpoint AI platform based on microcontrollers, expanding the AI ecosystem into the microcontroller domain. This solution is based on Nuvoton’s newly designed microcontrollers and microprocessors, including the NuMicro MA35D1, NuMicro M467, and the NuMicro M55M1 series equipped with Arm Ethos-U55 NPU. Nuvoton provides a complete software stack and development tools to facilitate the rapid deployment of advanced machine learning and deep learning models, leveraging advantages such as low power consumption and cost-effectiveness to accelerate the adoption of AI applications, enhancing productivity, and improving human life.

As a leading microcontroller platform provider, Nuvoton not only offers advanced hardware chips but also provides developers with complete software development tools, significantly improving development efficiency. NuEdgeWise is an easy-to-use graphical Python machine learning development tool that provides rich machine learning sample code covering processes such as data collection, labeling, model training, and validation, making the machine learning development process easier.

Nuvoton’s latest microcontroller endpoint AI platform is designed to elevate a wide array of applications, including smart home, security access control, smart city, industrial automation, smart agriculture, interactive toys, fitness equipment, and wearable devices, by infusing embedded system products with advanced AI capabilities.

Endpoint AI microcontroller with Ethos-U55 NPU: NuMicro M55M1

The new NuMicro M55M1 series microcontroller is an innovative Endpoint AI solution that integrates comprehensive microcontroller features, including control, connectivity, security, and advanced machine learning inference capabilities. The M55M1 microcontroller features a 200 MHz Arm Cortex-M55 CPU and a 200 MHz Arm Ethos-U55 NPU, providing machine learning inference capability and supporting CNN and RNN operations. It includes built-in 1.5 MB SRAM and 2 MB flash memory and can expand HYPERRAM or HYPERFLASH via the HYPERBUS interface. To enhance the overall performance of application systems, the M55M1 microcontroller incorporates three unique features to optimize system performance, security, and power consumption. Firstly, it enables continuous operation of image sensors, microphones, and various sensors in a low-power sleep mode, allowing for constant monitoring of predefined events such as personnel presence or significant sound and vibration detection. Secondly, it stores machine learning model data in an area accessible only to the NPU but not to the CPU, to prevent malicious programs from stealing model data and thus protect intellectual property. Lastly, the M55M1 also implements sine and cosine hardware circuits, which are defined within Arm’s custom instructions for easy invocation by software. These unique features of M55M1 empower developers to develop endpoint AI applications that achieve performance, power efficiency, and security.

High-performance edge industrial IoT series: NuMicro MA35D1

The NuMicro MA35D1 series heterogeneous multicore microprocessor is designed to meet the high-end industrial IoT requirements, featuring dual-core Arm Cortex-A35 64-bit processors with a maximum frequency of 800 MHz and a 180 MHz Arm Cortex-M4F core. Combined with a USB camera and CNN models, MA35D1 can perform endpoint AI tasks such as object detection.

The Ethernet/Crypto MCU with excellent security and connectivity: NuMicro M467

The M467 series features a 200 MHz Arm Cortex-M4F core with a built-in DSP instruction set and a single-precision floating-point unit (FPU). With the tinyML software technology, the M467 can perform various endpoint AI applications, such as gesture recognition, equipment anomaly detection, and keyword spotting. The M467 series microcontrollers have also participated in the MLPerf Tiny Benchmark test, demonstrating excellent inference speed across four endpoint AI tasks.

Complete machine learning development tools – Accelerating the implementation of AI applications

In addition to innovative microcontroller specifications, Nuvoton also supports a complete machine-learning software development stack for developers to develop machine-learning applications. The software stack includes NuEdgeWise Python development environment and machine learning sample code, Tensorflow machine learning model training framework, Vela neural network compiler dedicated to Ethos NPU, Tensorflow Lite for microcontroller inference framework, Arm CMSIS-NN machine learning library, and Ethos-U55 NPU driver.

Nuvoton’s endpoint AI microcontrollers enhance products across a diverse range of applications – including smart home, security access control, smart city, industrial automation, smart agriculture, interactive toys, fitness equipment, and wearable devices – by seamlessly integrating AI capabilities to deliver added value.

The post Accelerating the Adoption of AI Applications, Nuvoton Technology Introduces an Endpoint AI Product Platform Based on Microcontrollers and Microprocessors appeared first on ELE Times.

Microchip Technology Expands TrustFLEX Family with CEC1736 Real-time Platform Root of Trust Devices

Срд, 03/27/2024 - 09:56

TrustFLEX devices along with the Trust Platform Design Suite tool will simplify the enablement of the root of trust from concept to production in a wide range of applications

As technology and cybersecurity standards continue to evolve, Microchip Technology is helping make embedded security solutions more accessible with its CEC1736 TrustFLEX devices. The CEC1736 Trust Shield family is a microcontroller-based platform root of trust solution enabling cyber resiliency for data centres, telecom, networking, embedded computing and industrial applications. Now, as part of the TrustFLEX platform, the devices are partially configured and provisioned with Microchip-signed Soteria-G3 firmware to reduce the development time needed to integrate the platform root of trust. These devices also help fast-track the provisioning of required cryptographic assets and signed firmware images, simplifying the process of secure manufacturing as required by the National Institute of Standards and Technology (NIST) and Open Compute Project (OCP) standards.

Specifically designed to meet NIST 800-193 platform resiliency guidelines, as well as OCP requirements, CEC1736 TrustFLEX devices can support security features necessary to enable hardware root of trust across various markets. The Trust Platform Design Suite tool will allow customers to personalize platform-specific configuration settings, including unique credentials, to support any application, host processor or SoC that boots out of an external SPI Flash device to extend the root of trust in the system.

“Microchip has led our industry in streamlining secure provisioning from design to deployment for devices and platforms of all scales. This rich range of solutions now include OCP-compliant root of trust devices,” said Nuri Dagdeviren, corporate vice president of Microchip’s secure computing group. “With the pre-configured CEC1736 TrustFLEX family, we are helping lower the barrier of entry and making it easier for customers to implement platform root of trust and enable faster prototyping and speed to market.”

Modern firmware security features enabled on the CEC1736 TrustFLEX—like SPI bus monitoring, secure boot, component attestation and lifecycle management—can keep both the pre-boot and real-time (time of check and time of use) environments shielded from both in-person and remote threats.

The highly configurable, mixed-signal, advanced I/O CEC1736 controllers integrate a 32-bit 96 MHz Arm Cortex-M4 processor core with closely coupled memory to offer optimal code execution and data access.

The post Microchip Technology Expands TrustFLEX Family with CEC1736 Real-time Platform Root of Trust Devices appeared first on ELE Times.

Сторінки